首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixed parvocellular and magnocellular geniculate signals in visual area V4.   总被引:5,自引:0,他引:5  
V P Ferrera  T A Nealey  J H Maunsell 《Nature》1992,358(6389):756-761
Visual information from the retina is transmitted to the cerebral cortex by way of the lateral geniculate nucleus (LGN) in the thalamus. In primates, most of the retinal ganglion cells that project to the LGN belong to one of two classes, P and M, whose axons terminate in the parvocellular or magnocellular subdivisions of the LGN. These cell classes give rise to two channels that have been distinguished anatomically, physiologically and behaviourally. The visual cortex also can be subdivided into two pathways, one specialized for motion processing and the other for colour and form information. Several lines of indirect evidence have suggested a close correspondence between the subcortical and cortical pathways, such that the M channel provides input to the motion pathway and the P channel drives the colour/form pathway. This hypothesis was tested directly by selectively inactivating either the magnocellular or parvocellular subdivision of the LGN and recording the effects on visual responses in the cortex. We have previously reported that, in accordance with the hypothesis, responses in the motion pathway in the cortex depend primarily on magnocellular LGN. We now report that in the colour/form pathway, visual responses depend on both P and M input. These results argue against a simple correspondence between the subcortical and cortical pathways.  相似文献   

2.
Stevens CF 《Nature》2001,411(6834):193-195
A hallmark of mammalian brain evolution is the disproportionate increase in neocortical size as compared with subcortical structures. Because primary visual cortex (V1) is the most thoroughly understood cortical region, the visual system provides an excellent model in which to investigate the evolutionary expansion of neocortex. I have compared the numbers of neurons in the visual thalamus (lateral geniculate nucleus; LGN) and area V1 across primate species. Here I find that the number of V1 neurons increases as the 3/2 power of the number of LGN neurons. As a consequence of this scaling law, the human, for example, uses four times as many V1 neurons per LGN neuron (356) to process visual information as does a tarsier (87). I argue that the 3/2 power relationship is a natural consequence of the organization of V1, together with the requirement that spatial resolution in V1 should parallel the maximum resolution provided by the LGN. The additional observation that thalamus/neocortex follows the same evolutionary scaling law as LGN/V1 may suggest that neocortex generally conforms to the same organizational principle as V1.  相似文献   

3.
Noudoost B  Moore T 《Nature》2011,474(7351):372-375
The prefrontal cortex is thought to modulate sensory signals in posterior cortices during top-down attention, but little is known about the underlying neural circuitry. Experimental and clinical evidence indicate that prefrontal dopamine has an important role in cognitive functions, acting predominantly through D1 receptors. Here we show that dopamine D1 receptors mediate prefrontal control of signals in the visual cortex of macaques (Macaca mulatta). We pharmacologically altered D1-receptor-mediated activity in the frontal eye field of the prefrontal cortex and measured the effect on the responses of neurons in area V4 of the visual cortex. This manipulation was sufficient to enhance the magnitude, the orientation selectivity and the reliability of V4 visual responses to an extent comparable with the known effects of top-down attention. The enhancement of V4 signals was restricted to neurons with response fields overlapping the part of visual space affected by the D1 receptor manipulation. Altering either D1- or D2-receptor-mediated frontal eye field activity increased saccadic target selection but the D2 receptor manipulation did not enhance V4 signals. Our results identify a role for D1 receptors in mediating the control of visual cortical signals by the prefrontal cortex and suggest how processing in sensory areas could be altered in mental disorders involving prefrontal dopamine.  相似文献   

4.
S Shipp  S Zeki 《Nature》1985,315(6017):322-325
V5 and V4 are areas of macaque monkey prestriate visual cortex that are specialized for involvement in different aspects of visual perception, namely motion for V5 (refs 1-4) and colour vision, with other possible functions, for V4 (refs 2, 5-9). Thus, it is unlikely that they should be fed the same information for further processing, yet both receive a strong input from patches of the upper layers of V2 (refs 10, 11), the area immediately adjoining the primary visual cortex, V1. V2, however, seems to comprise functionally distinct subregions, which can be revealed by staining the tissue for the mitochondrial enzyme cytochrome oxidase. Here we report that V4 and V5 are connected with separate cytochrome oxidase-defined subregions of V2, suggesting that cortical pathways dealing with motion and colour perception are segregated in their passage through V2, and reinforcing evidence for functional specialization in the visual cortex.  相似文献   

5.
J O Hahm  R B Langdon  M Sur 《Nature》1991,351(6327):568-570
Afferent activity has an important role in the formation of connections in the developing mammalian visual system. But the extent to which the activity of target neurons shapes patterns of afferent termination and synaptic contact is not known. In the ferret's visual pathway, retinal ganglion cell axons from each eye segregate early in development into eye-specific laminae in the lateral geniculate nucleus (LGN). The dorsal laminae (termed laminae A and A1) then segregate further into inner and outer sublaminae that retain input from on-centre and off-centre retinal axons, respectively. Thus, individual retinogeniculate axons form terminal arbors within laminae A and A1 that are restricted to one inner or outer sublamina. We report here that blockade of N-methyl-D-aspartate (NMDA) receptors on LGN cells with specific antagonists during the period of sublamina formation prevents retinal afferents from segregating into 'On' and 'Off' sublaminae. Retinogeniculate axons have arbors that are not restricted appropriately, or are restricted in size but inappropriately positioned within the eye-specific laminae. NMDA receptor antagonists may specifically disrupt a mechanism by which LGN neurons detect correlated afferent and target activity, and have been shown to reduce retinogeniculate transmission more generally, causing LGN cells to have markedly reduced levels of activity. These results therefore indicate that the activity of postsynaptic cells can significantly influence the patterning of inputs and the structure of presynaptic afferents during development.  相似文献   

6.
A Ghosh  A Antonini  S K McConnell  C J Shatz 《Nature》1990,347(6289):179-181
The neurons of layer 4 in the adult cerebral cortex receive their major ascending inputs from the thalamus. In development, however, thalamic axons arrive at the appropriate cortical area long before their target layer 4 neurons have migrated into the cortical plate. The axons accumulate and wait in the zone below the cortical plate, the subplate, for several weeks before invading the cortical plate. The subplate is a transient zone that contains the first postmitotic neurons of the telencephalon. These neurons mature well before other cortical neurons, and disappear by cell death after the thalamic axons have grown into the overlying cortical plate. The close proximity of growing thalamocortical axons and subplate neurons suggests that they might be involved in interactions important for normal thalamocortical development. Here we show that early in development the deletion of subplate neurons located beneath visual cortex prevents axons from the lateral geniculate nucleus of the thalamus from recognizing and innervating visual cortex, their normal target. In the absence of subplate neurons, lateral geniculate nucleus axons continue to grow in the white matter past visual cortex despite the presence of their target layer 4 neurons. Thus the transient subplate neurons are necessary for appropriate cortical target selection by thalamocortical axons.  相似文献   

7.
B Chapman  M D Jacobson  H O Reiter  M P Stryker 《Nature》1986,324(6093):154-156
Monocular lid suture during the sensitive period early in the life of a kitten disrupts normal development of inputs from the two eyes to the visual cortex, causing a decrease in the fraction of cortical cells responding to the deprived eye. Such an ocular dominance shift has been assumed to depend on patterned visual experience, because no change in cortical physiology is produced by inequalities between the two eyes in retinal illumination or temporally modulated diffuse light stimulation. A higher-level process, involving gating signals from areas outside striate cortex, has been proposed to ensure that sustained changes in synaptic efficacy occur only in response to behaviourally significant visual inputs. To test whether such a process is necessary for ocular dominance plasticity, we treated 4-week-old kittens with visual deprivation and monocular tetrodotoxin (TTX) injections to create an imbalance in the electrical activities of the two retinas in the absence of patterned vision. After 1 week of treatment we determined the ocular dominance distribution of single units in primary visual cortex. In all kittens studied, a significant ocular dominance shift was found. In addition to this physiological change, there was an anatomical change in the lateral geniculate nucleus, where cells were larger in laminae receiving input from the more active eye. Our results indicate that patterned vision is not necessary for visual cortical plasticity, and that an imbalance in spontaneous retinal activity alone can produce a significant ocular dominance shift.  相似文献   

8.
McAlonan K  Cavanaugh J  Wurtz RH 《Nature》2008,456(7220):391-394
The massive visual input from the eye to the brain requires selective processing of some visual information at the expense of other information, a process referred to as visual attention. Increases in the responses of visual neurons with attention have been extensively studied along the visual processing streams in monkey cerebral cortex, from primary visual areas to parietal and frontal cortex. Here we show, by recording neurons in attending macaque monkeys (Macaca mulatta), that attention modulates visual signals before they even reach cortex by increasing responses of both magnocellular and parvocellular neurons in the first relay between retina and cortex, the lateral geniculate nucleus (LGN). At the same time, attention decreases neuronal responses in the adjacent thalamic reticular nucleus (TRN). Crick argued for such modulation of the LGN by observing that it is inhibited by the TRN, and suggested that "if the thalamus is the gateway to the cortex, the reticular complex might be described as the guardian of the gateway", a reciprocal relationship we now show to be more than just hypothesis. The reciprocal modulation in LGN and TRN appears only during the initial visual response, but the modulation of LGN reappears later in the response, suggesting separate early and late sources of attentional modulation in LGN.  相似文献   

9.
B D Kuppermann  T Kasamatsu 《Nature》1983,306(5942):465-468
When a kitten is subjected to monocular lid suture early in life, cells in laminae of the lateral geniculate nucleus (LGN) connected to the sutured eye grow less than normal and cells in those laminae connected to the non-sutured eye grow more than normal. These changes are seen primarily in the binocular segment of the LGN, which corresponds to the central visual field, and are due to competition either between intracortical afferents originating from the different LGN laminae, or directly among cells within the LGN. The afferent deprivation induced by lid suture, however, is not complete, as retinal ganglion cells fire tonically both in darkness and in light. It is generally thought that this tonic retinal activity is necessary to maintain neuronal excitability at normal threshold in the central visual pathway. In the visual cortex of developing kittens, we previously showed a long-lasting change in ocular dominance of binocular cells by a brief blockade of retinal activity in one optic nerve. We report here that a complete blockade of retinal activity in one eye causes major changes in LGN cell size within 1 week. These changes occur throughout the LGN, including the monocular segment where binocular competition does not occur. The results indicate that tonic retinal activity may have an important role in the control of geniculate cell size.  相似文献   

10.
Olsen SR  Bortone DS  Adesnik H  Scanziani M 《Nature》2012,483(7387):47-52
After entering the cerebral cortex, sensory information spreads through six different horizontal neuronal layers that are interconnected by vertical axonal projections. It is believed that through these projections layers can influence each other's response to sensory stimuli, but the specific role that each layer has in cortical processing is still poorly understood. Here we show that layer six in the primary visual cortex of the mouse has a crucial role in controlling the gain of visually evoked activity in neurons of the upper layers without changing their tuning to orientation. This gain modulation results from the coordinated action of layer six intracortical projections to superficial layers and deep projections to the thalamus, with a substantial role of the intracortical circuit. This study establishes layer six as a major mediator of cortical gain modulation and suggests that it could be a node through which convergent inputs from several brain areas can regulate the earliest steps of cortical visual processing.  相似文献   

11.
Maffei A  Nataraj K  Nelson SB  Turrigiano GG 《Nature》2006,443(7107):81-84
The fine-tuning of circuits in sensory cortex requires sensory experience during an early critical period. Visual deprivation during the critical period has catastrophic effects on visual function, including loss of visual responsiveness to the deprived eye, reduced visual acuity, and loss of tuning to many stimulus characteristics. These changes occur faster than the remodelling of thalamocortical axons, but the intracortical plasticity mechanisms that underlie them are incompletely understood. Long-term depression of excitatory intracortical synapses has been proposed as a general candidate mechanism for the loss of cortical responsiveness after visual deprivation. Alternatively (or in addition), the decreased ability of the deprived eye to activate cortical neurons could be due to enhanced intracortical inhibition. Here we show that visual deprivation leaves excitatory connections in layer 4 (the primary input layer to cortex) unaffected, but markedly potentiates inhibitory feedback between fast-spiking basket cells (FS cells) and star pyramidal neurons (star pyramids). Further, a previously undescribed form of long-term potentiation of inhibition (LTPi) could be induced at synapses from FS cells to star pyramids, and was occluded by previous visual deprivation. These data suggest that potentiation of inhibition is a major cellular mechanism underlying the deprivation-induced degradation of visual function, and that this form of LTPi is important in fine-tuning cortical circuitry in response to visual experience.  相似文献   

12.
The colour centre in the cerebral cortex of man   总被引:23,自引:0,他引:23  
Anatomical and physiological studies have shown that there is an area specialized for the processing of colour (area V4) in the prestriate cortex of macaque monkey brain. Earlier this century, suggestive clinical evidence for a colour centre in the brain of man was dismissed because of the association of other visual defects with the defects in colour vision. However, since the demonstration of functional specialization in the macaque cortex, the question of a colour centre in man has been reinvestigated, based on patients with similar lesions in the visual cortex. In order to study the colour centre in normal human subjects, we used the technique of positron emission tomography (PET), which measures increases in blood flow resulting from increased activity in the cerebral cortex. A comparison of the results of PET scans of subjects viewing multi-coloured and black-and-white displays has identified a region of normal human cerebral cortex specialized for colour vision.  相似文献   

13.
Parallel processing of motion and colour information   总被引:1,自引:0,他引:1  
T Carney  M Shadlen  E Switkes 《Nature》1987,328(6131):647-649
When the two eyes are confronted with sufficiently different versions of the visual environment, one or the other eye dominates perception in alternation. A similar situation may be created in the laboratory by presenting images to the left and right eyes which differ in orientation or colour. Although perception is dominated by one eye during rivalry, there are a number of instances in which visual processes nevertheless continue to integrate information from the suppressed eye. For example the interocular transfer of the motion after-effect is undiminished when induced during binocular rivalry. Thus motion information processing may occur in parallel with the rivalry process. Here we describe a novel example in which the visual system simultaneously exhibits binocular rivalry and vision that integrates signals from both eyes. This apparent contradiction is resolved by postulating parallel visual processes devoted to the analyses of colour and motion information. Counterphased gratings are viewed dichoptically such that for one eye the grating is composed of alternating yellow and black stripes (luminance) while for the other it is composed of alternating red and green stripes (chrominance). When the gratings are fused, a moving grating is perceived. A consistent direction of motion can only be achieved if left and right monocular signals are integrated by the nervous system. Yet the apparent colour of the binocular percept alternates between red-green and yellow-black. These observations demonstrate the segregation of processing by the early motion system from that affording the perception of colour. Although, in this stimulus, colour information in itself can play no part in the cyclopean perception of motion direction, colour is carried along perceptually (filled in) by the moving pattern which is integrated from both eyes.  相似文献   

14.
Correlated binocular activity guides recovery from monocular deprivation   总被引:4,自引:0,他引:4  
Monocular deprivation (MD) has much more rapid and severe effects on the ocular dominance of neurons in the primary visual cortex (V1) than does binocular deprivation. This finding underlies the widely held hypothesis that the developmental plasticity of ocular dominance reflects competitive interactions for synaptic space between inputs from the two eyes. According to this view, the relative levels of evoked activity in afferents representing the two eyes determine functional changes in response to altered visual experience. However, if the deprived eye of a monocularly deprived kitten is simply reopened, there is substantial physiological and behavioural recovery, leading to the suggestion that absolute activity levels, or some other non-competitive mechanisms, determine the degree of recovery from MD. Here we provide evidence that correlated binocular input is essential for such recovery. Recovery is far less complete if the two eyes are misaligned after a period of MD. This is a powerful demonstration of the importance of cooperative, associative mechanisms in the developing visual cortex.  相似文献   

15.
设计了一款用于视皮层视觉修复的基于FPGA的多通道视皮层刺激器。该刺激器由FPGA和外围电压/电流转换电路两部分组成。FPGA内部包括刺激脉冲发生器和多个多路选择器:刺激脉冲发生器产生各种形式的脉冲序列信号;多路选择器作为控制端实现对信号的选择,每一通道对应一个多路选择器,增加多路选择器即可实现通道的增加。FPGA输出的电压信号通过外围电压/电流转换电路,转换为电流信号后传入电极阵列。采用Altera公司Cyclone系列EP1C6型FPGA制作了四通道实验样机进行动物实验。采用猫作为实验对象,在猫的视皮层硬脑膜外左右两侧植入微电极,左侧接入刺激信号,右侧记录脑电,实验结果显示,视皮层能够响应来自对硬脑膜的电刺激,验证了所设计的刺激器是可行的。  相似文献   

16.
Person AL  Raman IM 《Nature》2012,481(7382):502-505
An unusual feature of the cerebellar cortex is that its output neurons, Purkinje cells, release GABA (γ-aminobutyric acid). Their high intrinsic firing rates (50?Hz) and extensive convergence predict that their target neurons in the cerebellar nuclei would be largely inhibited unless Purkinje cells pause their spiking, yet Purkinje and nuclear neuron firing rates do not always vary inversely. One indication of how these synapses transmit information is that populations of Purkinje neurons synchronize their spikes during cerebellar behaviours. If nuclear neurons respond to Purkinje synchrony, they may encode signals from subsets of inhibitory inputs. Here we show in weanling and adult mice that nuclear neurons transmit the timing of synchronous Purkinje afferent spikes, owing to modest Purkinje-to-nuclear convergence ratios (~40:1), fast inhibitory postsynaptic current kinetics (τ(decay) = 2.5?ms) and high intrinsic firing rates (~90?Hz). In vitro, dynamically clamped asynchronous inhibitory postsynaptic potentials mimicking Purkinje afferents suppress nuclear cell spiking, whereas synchronous inhibitory postsynaptic potentials entrain nuclear cell spiking. With partial synchrony, nuclear neurons time-lock their spikes to the synchronous subpopulation of inputs, even when only 2 out of 40 afferents synchronize. In vivo, nuclear neurons reliably phase-lock to regular trains of molecular layer stimulation. Thus, cerebellar nuclear neurons can preferentially relay the spike timing of synchronized Purkinje cells to downstream premotor areas.  相似文献   

17.
In the rodent primary somatosensory cortex, the configuration of whiskers and sinus hairs on the snout and of receptor-dense zones on the paws is topographically represented as discrete modules of layer IV granule cells (barrels) and thalamocortical afferent terminals. The role of neural activity, particularly activity mediated by NMDARs (N-methyl-D-aspartate receptors), in patterning of the somatosensory cortex has been a subject of debate. We have generated mice in which deletion of the NMDAR1 (NR1) gene is restricted to excitatory cortical neurons, and here we show that sensory periphery-related patterns develop normally in the brainstem and thalamic somatosensory relay stations of these mice. In the somatosensory cortex, thalamocortical afferents corresponding to large whiskers form patterns and display critical period plasticity, but their patterning is not as distinct as that seen in the cortex of normal mice. Other thalamocortical patterns corresponding to sinus hairs and digits are mostly absent. The cellular aggregates known as barrels and barrel boundaries do not develop even at sites where thalamocortical afferents cluster. Our findings indicate that cortical NMDARs are essential for the aggregation of layer IV cells into barrels and for development of the full complement of thalamocortical patterns.  相似文献   

18.
文章讨论了利用蓝色磷光小分子铱配合物[iridium(III)bis-(4',6'-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate(Fir6)]与黄色荧光染料Rubrene复合发光产生白光的设想.通过引入CdS薄层而增加电子注入,利用结构为ITO/2-TNATA/NPB/Rubrene/CBP/CBP:Fir6/CBP/Bphen/CdS/LiF/Al的器件,通过增加激子阻挡层CBP,获得了色度较好的白色有机电致发光器件.当两层激子阻挡层CBP厚度均为3 nm时,电压从启亮电压3.4 V开始至9 V为止,器件的色坐标从(0.36,0.36)变化到(0.32,0.31),使器件的色度获得了很好的改善.  相似文献   

19.
Several aspects of cortical organization are thought to remain plastic into adulthood, allowing cortical sensorimotor maps to be modified continuously by experience. This dynamic nature of cortical circuitry is important for learning, as well as for repair after injury to the nervous system. Electrophysiology studies suggest that adult macaque primary visual cortex (V1) undergoes large-scale reorganization within a few months after retinal lesioning, but this issue has not been conclusively settled. Here we applied the technique of functional magnetic resonance imaging (fMRI) to detect changes in the cortical topography of macaque area V1 after binocular retinal lesions. fMRI allows non-invasive, in vivo, long-term monitoring of cortical activity with a wide field of view, sampling signals from multiple neurons per unit cortical area. We show that, in contrast with previous studies, adult macaque V1 does not approach normal responsivity during 7.5 months of follow-up after retinal lesions, and its topography does not change. Electrophysiology experiments corroborated the fMRI results. This indicates that adult macaque V1 has limited potential for reorganization in the months following retinal injury.  相似文献   

20.
Receptive field dynamics in adult primary visual cortex.   总被引:38,自引:0,他引:38  
C D Gilbert  T N Wiesel 《Nature》1992,356(6365):150-152
The adult brain has a remarkable ability to adjust to changes in sensory input. Removal of afferent input to the somatosensory, auditory, motor or visual cortex results in a marked change of cortical topography. Changes in sensory activity can, over a period of months, alter receptive field size and cortical topography. Here we remove visual input by focal binocular retinal lesions and record from the same cortical sites before and within minutes after making the lesion and find immediate striking increases in receptive field size for cortical cells with receptive fields near the edge of the retinal scotoma. After a few months even the cortical areas that were initially silenced by the lesion recover visual activity, representing retinotopic loci surrounding the lesion. At the level of the lateral geniculate nucleus, which provides the visual input to the striate cortex, a large silent region remains. Furthermore, anatomical studies show that the spread of geniculocortical afferents is insufficient to account for the cortical recovery. The results indicate that the topographic reorganization within the cortex was largely due to synaptic changes intrinsic to the cortex, perhaps through the plexus of long-range horizontal connections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号