首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
稀土硅铁对高铬白口铸铁组织及性能的影响   总被引:1,自引:0,他引:1  
为了解决高铬白口铸铁的脆性会严重降低其使用寿命问题,因此降低高铬白口铸铁的冲击脆性提高其韧性具有重要的现实意义.通过对大量实验数据的分析,研究高铬白口铸铁采用不同量稀土硅铁合金变质处理后,高铬白口铸铁组织和性能的变化.实验结果表明适量稀土硅铁使高铬铸铁组织细化,碳化物形态改善,适当的稀土硅铁可获得韧性和耐磨性的良好配合,延长高铬白口铸铁的使用寿命.  相似文献   

2.
高铬铸铁被认为是抗磨性能最好的且具有较好韧性的材料,因此在国外这种铸铁的应用十分广泛.铬能改变共晶碳化物的类型,改善碳化物形态,增加硬度,使铸铁韧性及耐磨性提高.为使高铬铸铁具有优越的性能,设计制订了合理的热处理工艺,并试验研究热处理工艺与成分、冷却速度与组织、硬度和冲击韧性之间的关系,在理论上给予一定的分析.  相似文献   

3.
分别用光学显微镜、扫描电镜、X-ray衍射仪和微机控制电液伺服万能试验机等研究了钼含量的变化对高铬铸铁中碳化物的形态和分布以及力学性能的影响。结果表明:适量的钼可以细化组织和改变碳化物形貌及分布,碳化物由长条状转变为球状,对基体的割裂程度减小明显。在高铬铸铁中加入合金元素钼可在不牺牲其韧性的情况下有效地提高其硬度及耐磨性,其中一部分钼固溶于奥氏体中提高了高铬铸铁淬透性,一部分与碳形成新的化合物Mo2C,从而提高了高铬铸铁的耐磨性。当钼的总加入量为0.9%时,高铬铸铁的综合力学性能达到最佳。  相似文献   

4.
渣浆泵过流件用高铬铸铁材料特性分析与选择   总被引:1,自引:0,他引:1  
基于定量金相分析和Thermo-Calc软件的热力学平衡相计算,研究了渣浆泵过流件用高铬铸铁中碳化物数量和基体铬含量与铸铁中碳、铬含量之间的定量关系,在此基础上阐明了各类高铬铸铁的主要特性及适用范围。结果表明,在不同工矿条件下渣浆泵过流件最佳使用效果可通过高铬铸铁中碳和铬含量的调整来实现,高铬铸铁中较高的碳含量有利于改善其耐磨性能,而高铬低碳配置有助于获得具有良好耐腐蚀性能的不锈钢基体。Thermo-Calc软件预测结果与定量金相分析结果基本上相符,可作为各类高铬铸铁材料特性分析及选用的工具。  相似文献   

5.
高铬白口铸铁抗磨粒磨损耐磨性与断裂韧性的研究   总被引:5,自引:1,他引:4  
本文研究了两种基体组织状态及碳化物体积分数对高铬白口铸铁抗磨粒磨损耐磨性、断裂韧性K_(IC)、K_(Id)及亚临界裂纹扩展速率da/dN的影响。结果表明:高铬白口铸铁耐磨性与磨损系统有关;而其断裂韧性及亚临界裂纹扩展速率与基体组织状态、碳化物体积分数及其形态与分布有关。综合研究结果,从高铬白口铸铁耐磨性与断裂韧性最优化角度考虑,如果用软磨料,宜选用马氏体基体;采用硬磨料,则宜选用奥氏体基体。  相似文献   

6.
探讨了铝、钒合金化对屈氏体高铬铸铁组织与性能的影响。实验结果表明,含Al 0.20%—0.30% 可显著改善碳化物的大小及分布,使其变成岛状,并细化了基体组织,提高其耐磨性及冲击韧性。含 V 0.40%—0.50% 可使铸态高铬铸铁的冲击韧性、硬度及耐磨性均得到提高。因此,采用铝、钒合金化办法,是改善高铬铸铁组织与性能的有效途径之一。  相似文献   

7.
研究了15Cr系亚共晶高铬铸铁超固相线液相烧结的制备工艺,利用光学显微镜和扫描电镜对合金的微观组织及冲击试样断口进行了观察和分析,探讨了烧结温度对高铬铸铁组织和力学性能的影响;并采用计算机定量分析金相组织,确定了组织与性能的相关性.研究结果表明,超固相线液相烧结制备的15Cr系亚共晶高铬铸铁相对致密度达99%以上.与普通铸造高铬铸铁相比,烧结制品碳化物外形圆润,呈短杆状均匀分布.随烧结温度的升高,基体晶粒和碳化物逐渐长大,合金力学性能呈现先升后降的规律;1 210℃×1.5 h烧结制品的冲击韧性和抗弯强度达到最大值11.3 J/cm2和2 506.8 MPa.试样的冲击断裂为准解理断裂机制,韧性较普通铸造试样大幅提高.烧结温度主要通过影响试样组织中碳化物数量、分布、形态以及尺寸,来影响合金力学性能.碳化物体积分数是影响高铬铸铁硬度的主要因素.  相似文献   

8.
高铬铸铁中的碳化物研究   总被引:5,自引:0,他引:5  
本文介绍了在铸态、预处理工艺以及预处理淬火工艺中锰钼高铬铸铁的组织和碳化物的形态;就预处理淬火工艺下二次碳化物的结构和成分进行了透射电镜分析;结果表明:预处理淬火工艺下,存在铬的M7C3型二次碳化物并呈弥散分布;对高铬铸铁的耐磨性产生积极的影响。  相似文献   

9.
为提高高铬铸铁的韧性和耐磨性能,以15Cr Mo2Cu1为研究对象,研究纳米颗粒变质剂对高铬铸铁组织、硬度、韧性、耐磨性的影响。对变质处理前后高铬铸铁的硬度和韧性进行实验。结果表明:铸态未变质的组织中,M7C3型碳化物粗大,变质处理后,碳化物尺寸变小,形状由粗大板条状变为小块状;热处理后,变质高铬铸铁硬度平均值可达HRC64.15,冲击平均值可达12.7 J/cm2,提高了耐磨性。  相似文献   

10.
研究采用 6 6 %Cr-Fe合金作为悬浮剂 ,通过大量的实验 ,研究了悬浮铸造对高铬白口铸铁显微组织和力学性能的影响。研究结果表明 ,适量的加入悬浮剂 ,可以明显的改变高铬白口铸铁的组织 ,使原来连续网状的碳化物变为细小均匀的粒状碳化物 ,冲击韧性提高约 2 0 % - 30 % ,抗磨性能提高 2 0 %。  相似文献   

11.
高铬白口铸铁的热处理工艺   总被引:2,自引:0,他引:2  
为了提高高铬白口铸铁的耐磨性和韧性,对实验用的高铬铸铁材料采用不同的热处理工艺,改变高铬铸铁的组织,即改变碳化物的多少和基本类型,通过对不同的热处理的试样的机械性能进行检测以及对其内部金相显微组织的观测来进行定量和定性分析,得出最佳的淬火和回火工艺温度(淬火1000℃+400℃回火),提高了其机械性能,为其在铸铁领域的应用提供了依据.  相似文献   

12.
固液混合铸造对高铬铸铁抗拉强度的影响   总被引:1,自引:0,他引:1  
采用固液混合铸造制备了高铬铸铁并对其机械性能进行了研究,结果表明:高铬铸铁中的碳化物比普通铸造的细小,形貌圆整,分布均匀.同时通过改进固液混合铸造工艺,使试样的抗拉强度有了显著提高,由普通铸造的524 MPa提高到707 MPa.  相似文献   

13.
以正交试验法研究高铬铸铁抛丸器叶片最佳热处理工艺参数,通过添加微量钒元素及纳米WC/TiC颗粒,改善高铬铸铁件的耐磨性并提高使用寿命,取得了初步的成效。试验结果发现:当淬火保温时间3 h、回火温度450 ℃、回火时间2 h、叶片硬度60 HRC时,耐磨性最好;微量钒元素和纳米WC/TiC颗粒的加入,可细化叶片微观组织,改变碳化物形貌,使叶片耐磨性提高30%。研究结果表明,优化热处理工艺和添加特殊成分可提高高铬叶片的耐磨性,提高综合效益。  相似文献   

14.
稀土元素对含铬白口铸铁中共晶碳化物生长的影响   总被引:2,自引:0,他引:2  
文中研制了一套高温度梯度的区域熔化定向凝固装置,能在工业用共晶成份的含铬白口铸铁试样中,得到平整的液—固界面;并由于在液态保持的时间较短,故可保留稀土变质处理的效果.使用这种装置研究了低铬(4%Cr)白口铸铁和高铬(20%Cr)白口铸铁中共晶碳化物的生长,以及稀土元素的存在对其造成的影响.在低铬白口铸铁中,随着稀土元素的加入,使共晶凝固时的领先相由基本上是碳化物变为基本上是奥氏体,并由于生长过程中,奥氏体在碳化物前端相互搭桥,使许多板状碳化物转变成板条状和杆状,稀土元素含量愈高,转变的份额愈多;高铬铸铁的共晶凝固与低铬铸铁不同,即使在不含稀土元素的情况下,亦主要是奥氏体为领先相,加入稀土元素对共晶生长时的领先相及碳化物的形貌没有明显的影响.  相似文献   

15.
本文通过高铬铸铁热塑性变形试验,得知在850℃~1100℃奥氏体化温度范围内,高铬铸铁具有良好的塑性变形能力。经热变形后,其大块共晶碳化物被破碎,并在基体中均匀分布,减少或消除了铸造缺陷,提高了机械性能,尤其是冲击韧性的提高更为明显。文中还提出,经等温淬火后,可获得良好的综合机械性能。  相似文献   

16.
采用动态旋转法研究了高铬铸铁在含固体颗粒腐蚀条件下的抗冲刷性.结果表明:在中性和碱性条件下,材料抗冲刷性好,酸性条件下弱.从SEM图片分析,冲刷过程经历了基体开裂、碳化物断裂及基体"粗糙"和碳化物脱落的过程.同时发现片状碳化物对材料的抗冲刷起支撑作用.  相似文献   

17.
通过金相显微镜和扫描电镜观察,研究Ti-W-Mg、Ti-Zr-Nb、Ti-Zr-Y基重稀土3种复合变质剂对高铬铸铁篦条组织的影响。结果表明,经变质处理后的篦条铸态组织中,其初生奥氏体被不同程度等轴化,共晶碳化物被有效细化、圆整化、孤立化和弥散化;篦条韧性有不同程度的增强;3种复合变质剂对高铬铸铁篦条组织的影响效果为:Ti-W-Mg最佳,Ti-Zr-Y基重稀土次之,Ti-Zr-Nb最差。  相似文献   

18.
通过改变高铬铸铁中的碳含量,而保持其它组分基本不变,得到M_7C_3型碳化物含量在9~42%之间的一系列合金.对每一种合金进行四种不同的热处理,从而使其具有四种不同的基体组织. 在ML-10磨料磨损试验机(二体磨损试验)和自制的自由磨料磨损试验机(三体磨损试验)上,用三种不同硬度的磨料(SiC、Al_2O_3和石榴子石)对这一系列合金进行磨损试验.并利用各种微观观察方法,分析和讨论了高铬铸铁中的两个主要组成相——(Cr,Fe)_7C_3型碳化物和基体在磨损过程中的作用,及其破损失效方式.结果指出:在不同的磨损系统中及在不同硬度的磨料下,合金组成相的破损是不同的,热处理状态强烈地影响了合金的耐磨性和组织破损形式,从而为在实际零件中选择高铬铸铁的成份和热处理提供了一定的依据.  相似文献   

19.
实验结果表明:为了保证复合界面达到良好的冶金结合,低合金钢须在1550℃进行浇注,高铬铸铁需在1530~1500℃下浇注。高铬铸铁浇注温度会影响碳及合金元素从高铬铸铁向低合金钢扩散,从而改变复合界面的力学性能。复合界面达到良好冶金结合的时候,复合界面显微硬度从低合金钢→界面结合区→高铬铸铁呈梯度增加,并存在一个稳定的过渡区,有利于改善使用过程中的受力状态,避免在结合区发生断裂。  相似文献   

20.
加入高铬铸铁中的稀土主要存在于夹杂物中,使夹杂物的类型、性质、形状、数量、尺寸和分布都发生变化。微量稀土改善了晶界结合状态,进一步提高了高铬铸铁的性能,尤其提高了耐磨性及多冲剥落的抗力,过量加入稀土将严重恶化高铬铸铁各种性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号