首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of Co addition on the microstructure,crystallization processes and soft magnetic properties of(Fe1 xCox)83Si4B8P4Cu1(x?0.35,0.5,0.65)alloys were investigated.The experimental results demonstrated that the addition of Co decreased the thermal stability against crystallization of the amorphous phase,and thus improved the heat treatment temperature of this alloy.Fe Co Si BPCu nanocrystalline alloys with a dispersedα0-Fe Co phase were obtained by appropriately annealing the as-quenched ribbons at 763 K for 10 min.Theα0-Fe Co with grains size ranging from 9 to 28 nm was identified in primary crystallization.The coercivity(Hc)markedly increased with increasing x and exhibited a minimum value at x0.35,while the saturation magnetic flux density(Bs)shows a slight decrease.The(Fe0.65Co0.35)83Si4B8P4Cu1nanocrystalline alloy exhibited a high saturation magnetic flux density Bsof 1.68 T,a low coercivity,Hcof 5.4 A/m and a high effective permeability meof 29,000 at 1 k Hz.  相似文献   

2.
Phase field simulations of phase separation in Fe-Cr binary alloys were performed by using the Cahn-Hilliard diffusion function. A new mobility model in relation to aging temperature and Cr content was used in the simulations. Two alloys of Fe-30at%Cr and Fe-35at%Cr were investigated at two different aging temperatures of 573 and 673 K. The phase separation kinetics was found to consist of three stages: wavelength modulation, amplitude increase, and coarsening of Cr-enriched regions. A higher thermal aging temperature accelerated the phase separation and increased the wavelength of concentration fluctuation. While the effect of Cr content on the phase separation kinetics was slight, Fe-Cr alloys with a higher Cr content were found to generate a larger number and a finer size of Cr-enriched regions. The simulation results provide consultation for design and safe operation of duplex stainless steel pipes in nuclear power plants.  相似文献   

3.
The sulfidation rate constants of various Fe-Mo binary alloys in S2 vapor with different sulfidation parameters were collected to summarize the correlation between the sulfidation rate and alloy composition, sulfur pressure and sulfldation temperature. The octivation energies indicate that the sulfidation process of the alloys is exclusively controlled, at a given temperature, by one alloying component i.e. either Mo or Fe. The sulfidation rate declines exponentially with the increasing of Mo content in alloy. And the influence of sulfur pressure is relatively slight.  相似文献   

4.
The ground state properties of β and ω phases in Ti-(0–30 at%)V alloys were calculated, and subsequently thermodynamics and energy barriers of the displacive β to ω transition were investigated by first-principles. The results show that the lattice parameters of β and ω phases decreases with increasing V content in Ti-V alloys. The principal lattice strains for the β to ω transition are highly compositional dependent, and the volume variation decreases with increasing V content. The mechanical stability of the ω phase increases initially at the V content around 10 at% and then decreases with increasing V content. Based on the quasiharmonic Debye model, a metastable diffusionless phase diagram has been established, showing that the ω phase is thermodynamically more stable than the β phase at room temperature, anticipating a spontaneous transition from β to ω phases in Ti-V alloys. The calculations of energy pathways indicate that there is an energy barrier during the displacive βto ω transition in Ti-V alloys at temperatures from 100 to 500 K, but not at 0 K.  相似文献   

5.
Ti-Mo alloys with various Mo contents from 6wt% to 14wt% were processed by spark plasma sintering based on elemental powders. The influence of sintering temperature and Mo content on the microstructure and mechanical properties of the resulting alloys were investigated. For each Mo concentration, the optimum sintering temperature was determined, resulting in a fully dense and uniform microstructure of the alloy. The optimized sintering temperature gradually increases in the range of 1100–1300℃ with the increase in Mo content. The microstructure of the Ti-(6–12)Mo alloy consists of acicular α phase surrounded by equiaxed grains of β phase, while the Ti-14Mo alloy only contains single β phase. A small amount of fine α lath precipitated from β phase contributes to the improvement in strength and hardness of the alloys. Under the sintering condition at 1250℃, the Ti-12Mo alloy is found to possess superior mechanical properties with the Vickers hardness of Hv 472, the compressive yield strength of 2182 MPa, the compression rate of 32.7%, and the elastic modulus of 72.1 GPa. These results demonstrate that Ti-Mo alloys fabricated via spark plasma sintering are indeed a perspective candidate alloy for dental applications.  相似文献   

6.
Ni-and Cu-free Zr-Al-Co-Nb glassy alloys with different Nb and Co contents were synthesized by melt spinning and copper mold casting.The effects of Nb addition to partially replace Co in the Zr55Al20Co25 glassy alloy on the glass-forming ability,thermal properties,in-vitro biocorrosion behavior and surface wettability of the metallic glasses were investigated.Although addition of Nb up to 5 at.% slightly decreased the supercooled liquid region and the glass-forming ability(GFA),the alloys could be casted in a bulk glassy rod form with diameters up to 3mm.The Zr-Al-Co-Nb glassy alloys were spontaneously passivated with low passive current densities in phosphate buffered saline and Hanks’ solution.Substitution of "toxic" Co by Nb is effective in improved the corrosion resistance of the Zr-Al-Co glassy alloy.Water contact angle measurements showed that Nb addition increased the hydrophilicity of the glassy alloys,which may enhance cell adhesion of the alloys in biomedical applications.  相似文献   

7.
The corrosion behaviors of X52, 3Cr low-alloy steel, and 13Cr stainless steel were investigated in an O_2–H2O–CO_2 environment at various temperatures and O_2–CO_2 partial-pressure ratios. The results showed that the corrosion rates of X52, 3Cr, and 13Cr steels increased with increasing temperature. The corrosion rates slowly increased at temperatures less than 100°C and increased sharply when the temperature exceeded 100°C. In the absence of O_2, X52, 3Cr, and 13Cr exhibited uniform corrosion morphology and Fe CO3 was the main corrosion product. When O_2 was introduced into the system, various forms of Fe_2O_3 appeared on the surface of the samples. The Cr content strongly influenced the corrosion resistance. The 3Cr steel with a low Cr content was more sensitive to pitting than the X52 or 13Cr steel. Thus, pitting occurred on the surface of 3Cr when 1.25 MPa of O_2 was added; this phenomenon is related to the non-uniform distribution of Crin 3Cr.  相似文献   

8.
Ti_(50)Zr_(27)Cu_8Ni_4Co_3Fe_2Al_3Sn_3(at%) amorphous filler metal with low Cu and Ni contents in a melt-spun ribbon form was developed for improving mechanical properties of Ti–6Al–4V alloy brazing joint through decreasing brittle intermetallics in the braze zone. Investigation on the crystallization behavior of the multicomponent Ti–Zr–Cu–Ni–Co–Fe–Al–Sn amorphous alloy indicates the high stability of the supercooled liquid against crystallization that favors the formation of amorphous structure. The Ti–6Al–4V joint brazed with this Ti-based amorphous filler metal with low total content of Cu and Ni at 1203K for 900s mainly consists of α-Ti, β-Ti,minor Ti–Zr-rich phase and only a small amount of Ti_3Cu intermetallics, leading to the high shear strength of the joint of about 460 MPa. Multicomponent composition design of amorphous alloys is an effective way of tailoring filler metals for improving the joint strength.  相似文献   

9.
Owning to their excellent thermal stability and high strength at elevated temperature,high entropy alloys(HEAs) possess great potential for the application in aviation and aerospace fields.In present work,two novel Nb-Ni-Ti-Co-Zr and Nb-Ni-Ti-Co-Zr-Hf HEAs were prepared by arc melting and copper mold suction-casting method.The microstructure,phase stability,mechanical properties at room temperature and elevated temperature of the two HEAs were studied.Both of the HEAs possess high yield stress at room temperature,especially for the Nb-Ni-Ti-Co-Zr(with 2331 Mpa).In addition,the Nb-Ni-Ti-Co-Zr HEA exhibited high yield stress of 564 Mpa at elevated temperature of 800 ℃ and large compressive plastic strain(more than 50%at 800 ℃).Nb-Ni-Ti-Co-Zr-Hf alloy showed new phase precipitation at 800 ℃,whereas the structure of Nb-Ni-Ti-Co-Zr was more stable,which is one of the reason why it possesses high strength at room temperature and elevated temperature.The high temperature properties of the Nb-Ni-Ti-Co-Zr HEA make it promising for high temperature application.  相似文献   

10.
Starting from the quaternary Cu47Ti34Zr11Ni8 alloy, the compositional dependence of thermal and elastic properties of Cu-Ti-Zr-Ni alloys was systematically investigated. Quaternary Cu-Ti-Zr-Ni alloys can be cast directly from the melt into copper molds to form fully amorphous strips or rods with the thickness of 3–6 mm. The evidence of the amorphous nature of the cast rods was provided by X-ray spectra. The measured glass transition temperature (Tg) and crystallization temperature (Tx) were obtained for the alloys using differential scanning calorimetry (DSC) at the heating rate of 20 K/s. In the results, the differences between the glass temperature and the crystallization temperature (ΔTx=Tx-Tg) are measured with values ranging up to 33–55 K. The reduced glass transition temperature (Trg), which is the ratio of the glass temperature to the liquidus temperature (Tl), is often used as an indication of the glass-forming ability of metallic alloys. For the present Cu-Ti-Zr-Ni alloys, this ratio is typically in the range of 0.5838–0.5959, characteristic of metallic alloys with good glass-forming ability. The elastic constants for several selected alloys were measured using ultrasonic methods. The values of the elastic shear modulus, bulk modulus, and Poisson’s ratio were also given.  相似文献   

11.
The liquid structure of seven representative Fe–Si–B alloys has been investigated by ab initio molecular dynamics simulation focusing on the role of clusters in terms of glass-forming ability(GFA) and crystallization. It is demonstrated that the type of primary phase precipitated from amorphous state under heat treatment is determined by the relative fraction and role of various clusters in melt. The alloy melt shows higher stability and resultantly larger GFA when there is no dominant cluster or several clusters coexist, which explains the different GFAs and crystallization processes at various ratios of Si and B in the Fe–Si–B system. The close correlation among clusters, crystalline phase and GFA is also studied.  相似文献   

12.
The solidification microstructure, grain boundary segregation of soluble arsenic, and characteristics of arsenic-rich phases were systematically investigated in Fe–As alloys with different arsenic contents and quenching temperatures. The results show that the solidification microstructures of Fe–0.5wt%As alloys consist of irregular ferrite, while the solidification microstructures of Fe–4wt%As and Fe–10wt%As alloys present the typical dendritic morphology, which becomes finer with increasing arsenic content and quenching temperature. In Fe–0.5wt%As alloys quenched from 1600 and 1200°C, the grain boundary segregation of arsenic is detected by transmission electron microscopy. In Fe–4wt%As and Fe–10wt%As alloys quenched from 1600 and 1420°C, a fully divorced eutectic morphology is observed, and the eutectic Fe2 As phase distributes discontinuously in the interdendritic regions. In contrast, the eutectic morphology of Fe–10wt%As alloy quenched from 1200°C is fibrous and forms a continuous network structure. Furthermore, the area fraction of the eutectic Fe2 As phase in Fe–4wt%As and Fe–10wt%As alloys increases with increasing arsenic content and decreasing quenching temperature.  相似文献   

13.
Crystallization behavior and resultant crystalline structure of a series of temperature-rising elution-fractionated specimen of a Ziegler-Natta catalyst-synthesized propylene-ethylene random copolymer were studied by DSC, WAXD and AFM. The experimental results indicate that both crystallization temperature and propylene sequence length exhibit great influence on the crystallization behavior and crystalline structure of the copolymer. It was found that the ethylene co-monomers acting as point defects inserted into the polypropylene chains play an important role in the formation of y-iPP. As the co-monomer content increases, the crystallizable sequence length of iPP decreases, which produces an appropriate condition for its y crystallization. At the same time, the existence of chain defects leads to a lower crystallinity of the copolymer and imperfection of the resultant crystals. For each individual sample with certain propylene sequence length or ethylene content, the increment of y-iPP crystal content with increasing crystallization temperature demonstrates that higher crystallization temperature is in favor of the y-iPP crystallization. Pure y-iPP crystals have been got in samples with propylene sequence length lower than 21 under suitable crystallization conditions.  相似文献   

14.
Using liquid Fe 60 Cu 40 alloy as a model, the structure of liquid Fe-Cu alloy systems is investigated in the temperature range 1200 2200 K, covering a large metastable undercooled regime, to understand the phase separation of liquid Fe-Cu alloys on the atomic scale. The total pair distribution functions (PDFs) indicate that liquid Fe 60 Cu 40 alloy is ordered in the short range and disordered in the long range. If the atom types are ignored, the total atom number densities and PDFs demonstrate that the atoms are distributed homogenously in the liquid alloy. However, the segregation of Fe and Cu atoms is very obvious with decreasing temperature. The partial PDFs and coordination numbers show that the Cu and Fe atoms are not apt to get together on the atomic scale at low temperatures; this will lead to large fluctuations and phase separation in liquid Fe-Cu alloy.  相似文献   

15.
Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C–4wt%Mn–1.5wt%Ni spheroidal carbide cast irons with varying vanadium (5.0wt%–10.0wt%) and chromium (up to 9.0wt%) contents. The alloys were quenched at 920℃. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides (M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%–10.0wt% for V and 2.5wt%–4.5wt% for Cr, which corresponds to the alloys containing 9vol%–15vol% spheroidal VC carbides, 8vol%–16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9–2.3 times that of the traditional 12wt% V–13wt% Mn spheroidal carbide cast iron.  相似文献   

16.
In this paper,novel electric conductive polylactide/carbon nanotubes(PLA/CNTs) foams were fabricated by a pressure-quench process using supercritical CO2as a blowing agent.The morphology of PLA/CNTs nanocomposites prepared by solution blending was characterized using SEM and the results indicate that CNTs well dispersed in PLA matrix.The introduction of CNTs improved the thermal stability of PLA.The morphology and electrical properties of PLA/CNTs foams were characterized and discussed.Depending on the process parameters,such as saturation temperature and pressure,nanocellular or microcellular structure of PLA/CNTs nanocomposites were obtained.The volume resistivity of PLA/CNTs foams was from 0.53 103Ω cm to 15.13 103Ω cm,which was affected by cell structure and crystallization of foams oppositely.Foaming reduced the electrical conductivity due to the decrease of CNTs volume content and the break of conductive pathways.However,crystallization increased the electrical conductivity possibly because of the CNTs structural change in which the CNTs were less curled and more connected.  相似文献   

17.
The shock compression experiment of liquid helium is an available way to gain properties of specimen at high temperatures and pressures.Based on Fluent,a thermal insulation analysis and design of a liquid helium temperature target in the environment condition of 100 Pa for shock compression experiment is performed.Then,a cryogenic target with a 10 K helium vapor shield and a separated vacuum interval is particularly developed.A lowest temperature of 3.63 K and a stable temperature of 3.70 K in the specimen cavity with an accuracy of 0.1 K are obtained by means of continuous flow and vacuum cooling.Both time-consuming and temperature stability are well-suited to the requirements of the shock compression experiment.The results show that the calculated and experimental data well-matched each other.The simulation method may be effective and feasible for the optimal design of the cryogenic target.  相似文献   

18.
The effect of Ni addition on the glass-forming ability (GFA) and soft-magnetic properties of an (Fe1-xNix)75.5B14.5P7Nb3 (x=0-0.6) alloy system were investigated. We found that the addition of Ni was effective in allowing the alloy to approach a eutectic point as well as increasing the thermal stability of the supercooled liquid. By increasing the amount of Ni,the supercooled liquid region (ΔTx),the reduced glass transition temperature Trg (Tg/Tl) and the Y parameter [Tx/(Tg+Tl)] increased from 49 to 75 K,0...  相似文献   

19.
The thermal stability and glass forming ability (GFA) of Zr35-xTi30Cu7.5Be27.5Agx (x = 0-10) alloys were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and ultrasonic techniques. We found that the addition of 1 at.% Ag can considerably enhance the GFA as indicated by an increase in the critical glass dimension from 15 mm in the Zr35Ti30Cu7.5Be27.5 alloy to 20 mm in the Zr34Ti30Cu7.5Be27.5Ag1 alloy. However, with the addition of more Ag the supercooled liquid region (△Tx) and y parameter (defined as Tx/(Tg+Tl)) drastically decreased from 155 K and 0.436 to 76 K and 0.363, respectively, resulting in a decrease in the GFA. Additionally, the elastic constant (the ratio of shear modulus to bulk modulus or Poisson’s ratio) was also used as a gauge to evaluate the GFA in Zr35-xTi30Cu7.5Be27.5Agx alloys.  相似文献   

20.
The influence of different contents of Cr, Mo, and rare earth element (RE) additives on the thermal conductivity of austenitic medium manganese steel was studied and discussed. The results show that the addition of Cr in medium manganese steel can improved the ordering of C-Mn atomic clusters, so as to improve the steel's thermal conductivity. However, Cr will lead to precipitation of a great deal of carbides in medium manganese steel when its content is greater than 4wt%. These carbides would aggregate around the grain boundary, and as a result, the thermal conductivity is decreased. By the addition of Mo whose content is about 2wt%, spherical carbides will be formed, thus improving the thermal conductivity of the medium manganese steel. The interaction between rare earth elements and alloying elements will raise both the thermal conductivity and the wear-resisting property of medium manganese steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号