首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss, vestibular dysfunction and visual impairment due to early onset retinitis pigmentosa (RP). So far, six loci (USH1A-USH1F) have been mapped, but only two USH1 genes have been identified: MYO7A for USH1B and the gene encoding harmonin for USH1C. We identified a Cuban pedigree linked to the locus for Usher syndrome type 1D (MIM 601067) within the q2 region of chromosome 10). Affected individuals present with congenital deafness and a highly variable degree of retinal degeneration. Using a positional candidate approach, we identified a new member of the cadherin gene superfamily, CDH23. It encodes a protein of 3,354 amino acids with a single transmembrane domain and 27 cadherin repeats. In the Cuban family, we detected two different mutations: a severe course of the retinal disease was observed in individuals homozygous for what is probably a truncating splice-site mutation (c.4488G-->C), whereas mild RP is present in individuals carrying the homozygous missense mutation R1746Q. A variable expression of the retinal phenotype was seen in patients with a combination of both mutations. In addition, we identified two mutations, Delta M1281 and IVS51+5G-->A, in a German USH1 patient. Our data show that different mutations in CDH23 result in USH1D with a variable retinal phenotype. In an accompanying paper, it is shown that mutations in the mouse ortholog cause disorganization of inner ear stereocilia and deafness in the waltzer mouse.  相似文献   

2.
Warburg Micro syndrome (WARBM1) is a severe autosomal recessive disorder characterized by developmental abnormalities of the eye and central nervous system and by microgenitalia. We identified homozygous inactivating mutations in RAB3GAP, encoding RAB3 GTPase activating protein, a key regulator of the Rab3 pathway implicated in exocytic release of neurotransmitters and hormones, in 12 families with Micro syndrome. We hypothesize that the underlying pathogenesis of Micro syndrome is a failure of exocytic release of ocular and neurodevelopmental trophic factors.  相似文献   

3.
4.
Lack of a maternal contribution to the genome at the imprinted domain on proximal chromosome 15 causes Angelman syndrome (AS) associated with neurobehavioral anomalies that include severe mental retardation, ataxia and epilepsy. Although AS patients have infrequent mutations in the gene encoding an E6-AP ubiquitin ligase required for long-term synaptic potentiation (LTP), most cases are attributed to de novo maternal deletions of 15q11-q13. We report here that a novel maternally expressed gene, ATP10C, maps within the most common interval of deletion and that ATP10C expression is virtually absent from AS patients with imprinting mutations, as well as from patients with maternal deletions of 15q11-q13.  相似文献   

5.
IMAGe syndrome (intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital anomalies) is an undergrowth developmental disorder with life-threatening consequences. An identity-by-descent analysis in a family with IMAGe syndrome identified a 17.2-Mb locus on chromosome 11p15 that segregated in the affected family members. Targeted exon array capture of the disease locus, followed by high-throughput genomic sequencing and validation by dideoxy sequencing, identified missense mutations in the imprinted gene CDKN1C (also known as P57KIP2) in two familial and four unrelated patients. A familial analysis showed an imprinted mode of inheritance in which only maternal transmission of the mutation resulted in IMAGe syndrome. CDKN1C inhibits cell-cycle progression, and we found that targeted expression of IMAGe-associated CDKN1C mutations in Drosophila caused severe eye growth defects compared to wild-type CDKN1C, suggesting a gain-of-function mechanism. All IMAGe-associated mutations clustered in the PCNA-binding domain of CDKN1C and resulted in loss of PCNA binding, distinguishing them from the mutations of CDKN1C that cause Beckwith-Wiedemann syndrome, an overgrowth syndrome.  相似文献   

6.
Nevus sebaceous is a common congenital cutaneous malformation. Affected individuals may develop benign and malignant secondary tumors in the nevi during life. Schimmelpenning syndrome is characterized by the association of nevus sebaceous with extracutaneous abnormalities. We report that of 65 sebaceous nevi studied, 62 (95%) had mutations in the HRAS gene and 3 (5%) had mutations in the KRAS gene. The HRAS c.37G>C mutation, which results in a p.Gly13Arg substitution, was present in 91% of lesions. Nonlesional tissues from 18 individuals had a wild-type sequence, confirming genetic mosaicism. The HRAS c.37G>C mutation was also found in 8 of 8 associated secondary tumors. Mosaicism for HRAS c.37G>C and KRAS c.35G>A mutations was found in two individuals with Schimmelpenning syndrome. Functional analysis of HRAS c.37G>C mutant cells showed constitutive activation of the MAPK and PI3K-Akt signaling pathways. Our results indicate that nevus sebaceous and Schimmelpenning syndrome are caused by postzygotic HRAS and KRAS mutations. These mutations may predispose individuals to the development of secondary tumors in nevus sebaceous.  相似文献   

7.
Heterozygous TGFBR2 mutations in Marfan syndrome   总被引:24,自引:0,他引:24  
Marfan syndrome is an extracellular matrix disorder with cardinal manifestations in the eye, skeleton and cardiovascular systems associated with defects in the gene encoding fibrillin (FBN1) at 15q21.1 (ref. 1). A second type of the disorder (Marfan syndrome type 2; OMIM 154705) is associated with a second locus, MFS2, at 3p25-p24.2 in a large French family (family MS1). Identification of a 3p24.1 chromosomal breakpoint disrupting the gene encoding TGF-beta receptor 2 (TGFBR2) in a Japanese individual with Marfan syndrome led us to consider TGFBR2 as the gene underlying association with Marfan syndrome at the MSF2 locus. The mutation 1524G-->A in TGFBR2 (causing the synonymous amino acid substitution Q508Q) resulted in abnormal splicing and segregated with MFS2 in family MS1. We identified three other missense mutations in four unrelated probands, which led to loss of function of TGF-beta signaling activity on extracellular matrix formation. These results show that heterozygous mutations in TGFBR2, a putative tumor-suppressor gene implicated in several malignancies, are also associated with inherited connective-tissue disorders.  相似文献   

8.
By exome sequencing, we found de novo SMARCB1 mutations in two of five individuals with typical Coffin-Siris syndrome (CSS), a rare autosomal dominant anomaly syndrome. As SMARCB1 encodes a subunit of the SWItch/Sucrose NonFermenting (SWI/SNF) complex, we screened 15 other genes encoding subunits of this complex in 23 individuals with CSS. Twenty affected individuals (87%) each had a germline mutation in one of six SWI/SNF subunit genes, including SMARCB1, SMARCA4, SMARCA2, SMARCE1, ARID1A and ARID1B.  相似文献   

9.
Germline gain-of-function mutations in SOS1 cause Noonan syndrome   总被引:1,自引:0,他引:1  
Noonan syndrome, the most common single-gene cause of congenital heart disease, is characterized by short stature, characteristic facies, learning problems and leukemia predisposition. Gain-of-function mutations in PTPN11, encoding the tyrosine phosphatase SHP2, cause approximately 50% of Noonan syndrome cases. SHP2 is required for RAS-ERK MAP kinase (MAPK) cascade activation, and Noonan syndrome mutants enhance ERK activation ex vivo and in mice. KRAS mutations account for <5% of cases of Noonan syndrome, but the gene(s) responsible for the remainder are unknown. We identified missense mutations in SOS1, which encodes an essential RAS guanine nucleotide-exchange factor (RAS-GEF), in approximately 20% of cases of Noonan syndrome without PTPN11 mutation. The prevalence of specific cardiac defects differs in SOS1 mutation-associated Noonan syndrome. Noonan syndrome-associated SOS1 mutations are hypermorphs encoding products that enhance RAS and ERK activation. Our results identify SOS1 mutants as a major cause of Noonan syndrome, representing the first example of activating GEF mutations associated with human disease and providing new insights into RAS-GEF regulation.  相似文献   

10.
Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder characterized by oculocutaneous albinism and a storage pool deficiency due to an absence of platelet dense bodies. Lysosomal ceroid lipofuscinosis, pulmonary fibrosis and granulomatous colitis are occasional manifestations of the disease. HPS occurs with a frequency of one in 1800 in north-west Puerto Rico due to a founder effect. Several non-Puerto Rican patients also have mutations in HPS1, which produces a protein of unknown function. Another gene, ADTB3A, causes HPS in the pearl mouse and in two brothers with HPS-2 (refs. 11,12). ADTB3A encodes a coat protein involved in vesicle formation, implicating HPS as a disorder of membrane trafficking. We sought to identify other HPS-causing genes. Using homozygosity mapping on pooled DNA of 6 families from central Puerto Rico, we localized a new HPS susceptibility gene to a 1.6-cM interval on chromosome 3q24. The gene, HPS3, has 17 exons, and a putative 113.7-kD product expected to reveal how new vesicles form in specialized cells. The homozygous, disease-causing mutation is a large deletion and represents the second example of a founder mutation causing HPS on the small island of Puerto Rico. We also present an allele-specific assay for diagnosing individuals heterozygous or homozygous for this mutation.  相似文献   

11.
Bardet-Biedl syndrome (BBS, MIM 209900) is a heterogeneous autosomal recessive disorder characterized by obesity, pigmentary retinopathy, polydactyly, renal malformations, mental retardation, and hypogenitalism. The disorder is also associated with diabetes mellitus, hypertension, and congenital heart disease. Six distinct BBS loci map to 11q13 (BBS1), 16q21 (BBS2), 3p13-p12 (BBS3), 15q22.3-q23 (BBS4), 2q31 (BBS5), and 20p12 (BBS6). Although BBS is rare in the general population (<1/100,000), there is considerable interest in identifying the genes causing BBS because components of the phenotype, such as obesity and diabetes, are common. We and others have demonstrated that BBS6 is caused by mutations in the gene MKKS (refs. 12,13), mutation of which also causes McKusick-Kaufman syndrome (hydrometrocolpos, post-axial polydactyly, and congenital heart defects). MKKS has sequence homology to the alpha subunit of a prokaryotic chaperonin in the thermosome Thermoplasma acidophilum. We recently identified a novel gene that causes BBS2. The BBS2 protein has no significant similarity to other chaperonins or known proteins. Here we report the positional cloning and identification of mutations in BBS patients in a novel gene designated BBS4.  相似文献   

12.
We report here the identification of a gene associated with the hyperparathyroidism-jaw tumor (HPT-JT) syndrome. A single locus associated with HPT-JT (HRPT2) was previously mapped to chromosomal region 1q25-q32. We refined this region to a critical interval of 12 cM by genotyping in 26 affected kindreds. Using a positional candidate approach, we identified thirteen different heterozygous, germline, inactivating mutations in a single gene in fourteen families with HPT-JT. The proposed role of HRPT2 as a tumor suppressor was supported by mutation screening in 48 parathyroid adenomas with cystic features, which identified three somatic inactivating mutations, all located in exon 1. None of these mutations were detected in normal controls, and all were predicted to cause deficient or impaired protein function. HRPT2 is a ubiquitously expressed, evolutionarily conserved gene encoding a predicted protein of 531 amino acids, for which we propose the name parafibromin. Our findings suggest that HRPT2 is a tumor-suppressor gene, the inactivation of which is directly involved in predisposition to HPT-JT and in development of some sporadic parathyroid tumors.  相似文献   

13.
14.
Bardet-Biedl syndrome (BBS, OMIM 209900) is a genetic disorder with the primary features of obesity, pigmentary retinopathy, polydactyly, renal malformations, mental retardation and hypogenitalism. Individuals with BBS are also at increased risk for diabetes mellitus, hypertension and congenital heart disease. What was once thought to be a homogeneous autosomal recessive disorder is now known to map to at least six loci: 11q13 (BBS1), 16q21 (BBS2), 3p13 p12 (BBS3), 15q22.3 q23 (BBS4), 2q31 (BBS5) and 20p12 (BBS6). There has been considerable interest in identifying the genes that underlie BBS, because some components of the phenotype are common. Cases of BBS mapping ro BBS6 are caused by mutations in MKKS; mutations in this gene also cause McKusick-Kaufman syndrome (hydrometrocolpos, post-axial polydactyly and congenital heart defects). In addition, we recently used positional cloning to identify the genes underlying BBS2 (ref. 16) and BBS4 (ref. 17). The BBS6 protein has similarity to a Thermoplasma acidophilum chaperonin, whereas BBS2 and BBS4 have no significant similarity to chaperonins. It has recently been suggested that three mutated alleles (two at one locus, and a third at a second locus) may be required for manifestation of BBS (triallelic inheritance). Here we report the identification of the gene BBS1 and show that a missense mutation of this gene is a frequent cause of BBS. In addition, we provide data showing that this common mutation is not involved in triallelic inheritance.  相似文献   

15.
Following homozygosity mapping in a single kindred, we identified nonsense and missense mutations in MYO5B, encoding type Vb myosin motor protein, in individuals with microvillus inclusion disease (MVID). MVID is characterized by lack of microvilli on the surface of enterocytes and occurrence of intracellular vacuolar structures containing microvilli. In addition, mislocalization of transferrin receptor in MVID enterocytes suggests that MYO5B deficiency causes defective trafficking of apical and basolateral proteins in MVID.  相似文献   

16.
17.
We took advantage of overlapping interstitial deletions at chromosome 8p11-p12 in two individuals with contiguous gene syndromes and defined an interval of roughly 540 kb associated with a dominant form of Kallmann syndrome, KAL2. We establish here that loss-of-function mutations in FGFR1 underlie KAL2 whereas a gain-of-function mutation in FGFR1 has been shown to cause a form of craniosynostosis. Moreover, we suggest that the KAL1 gene product, the extracellular matrix protein anosmin-1, is involved in FGF signaling and propose that the gender difference in anosmin-1 dosage (because KAL1 partially escapes X inactivation) explains the higher prevalence of the disease in males.  相似文献   

18.
The syndrome of congenital hypoparathyroidism, mental retardation, facial dysmorphism and extreme growth failure (HRD or Sanjad-Sakati syndrome; OMIM 241410) is an autosomal recessive disorder reported almost exclusively in Middle Eastern populations. A similar syndrome with the additional features of osteosclerosis and recurrent bacterial infections has been classified as autosomal recessive Kenny-Caffey syndrome (AR-KCS; OMIM 244460). Both traits have previously been mapped to chromosome 1q43-44 (refs 5,6) and, despite the observed clinical variability, share an ancestral haplotype, suggesting a common founder mutation. We describe refinement of the critical region to an interval of roughly 230 kb and identification of deletion and truncation mutations of TBCE in affected individuals. The gene TBCE encodes one of several chaperone proteins required for the proper folding of alpha-tubulin subunits and the formation of alpha-beta-tubulin heterodimers. Analysis of diseased fibroblasts and lymphoblastoid cells showed lower microtubule density at the microtubule-organizing center (MTOC) and perturbed microtubule polarity in diseased cells. Immunofluorescence and ultrastructural studies showed disturbances in subcellular organelles that require microtubules for membrane trafficking, such as the Golgi and late endosomal compartments. These findings demonstrate that HRD and AR-KCS are chaperone diseases caused by a genetic defect in the tubulin assembly pathway, and establish a potential connection between tubulin physiology and the development of the parathyroid.  相似文献   

19.
Seckel syndrome (OMIM 210600) is an autosomal recessive disorder characterized by intrauterine growth retardation, dwarfism, microcephaly and mental retardation. Clinically, Seckel syndrome shares features in common with disorders involving impaired DNA-damage responses, such as Nijmegen breakage syndrome (OMIM 251260) and LIG4 syndrome (OMIM 606593). We previously mapped a locus associated with Seckel syndrome to chromosome 3q22.1-q24 in two consanguineous Pakistani families. Further marker analysis in the families, including a recently born unaffected child with a recombination in the critical region, narrowed the region to an interval of 5 Mbp between markers D3S1316 and D3S1557 (145.29 Mbp and 150.37 Mbp). The gene encoding ataxia-telangiectasia and Rad3-related protein (ATR) maps to this region. A fibroblast cell line derived from an affected individual displays a defective DNA damage response caused by impaired ATR function. We identified a synonymous mutation in affected individuals that alters ATR splicing. The mutation confers a phenotype including marked microcephaly (head circumference 12 s.d. below the mean) and dwarfism (5 s.d. below the mean). Our analysis shows that UV-induced ATR activation can occur in non-replicating cells following processing by nucleotide excision repair.  相似文献   

20.
Meier-Gorlin syndrome is a rare autosomal recessive genetic condition whose primary clinical hallmarks include small stature, small external ears and small or absent patellae. Using marker-assisted mapping in multiple families from a founder population and traditional coding exon sequencing of positional candidate genes, we identified three different mutations in the gene encoding ORC4, a component of the eukaryotic origin recognition complex, in five individuals with Meier-Gorlin syndrome. In two such individuals that were negative for mutations in ORC4, we found potential mutations in ORC1 and CDT1, two other genes involved in origin recognition. ORC4 is well conserved in eukaryotes, and the yeast equivalent of the human ORC4 missense mutation was shown to be pathogenic in functional assays of cell growth. This is the first report, to our knowledge, of a germline mutation in any gene of the origin recognition complex in a vertebrate organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号