首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Degradation kinetics and mechanisms of phenolin photo-Fenton process   总被引:2,自引:0,他引:2  
Phenol degradation in photochemically enhanced Fenton process was investigated in this work. UV-VIS spectra of phenol degradation showed the difference between photo-Fenton process and UV/H2O2, which is a typical hydroxyl radical process. A possible pathway diagram for phenol degradation in photo-Fenton process was proposed, and a mathematical model for chemical oxygen demand (COD) removal was developed. Operating parameters such as dosage of H2O2 and ferrous ions, pH, suitable carrier gas were found to impact the removal of COD significantly. The results and analysis of kinetic parameters calculated from the kinetic model showed that complex degradation of phenol was the main pathway for removal of COD: while hydroxyl radicals acted weakly in the photo-Fenton degradation of phenol.  相似文献   

2.
Antioxidant activities of the 95% ethanol extract from Caesalpinia sappan heartwood (ECS), protosappanin A, protosappanin B, and brazilein were studied in vitro. The inhibition of the formation of malondialdehyde (MDA) and the scavenging of superoxide anions, hydrogen peroxide, and hydroxyl radicals were assayed. The experimental results show that all four substances had antioxidant activity in vitro but their capabilities differed for the different indicators. ECS, protosappanin A, and protosappanin B show more inhibition of MDA and scavenging of hydrogen peroxide, while brazilein shows more scavenging of hydroxyl radicals. All the samples show little scavenging of superoxide anions.  相似文献   

3.
The heterogeneous UV/Fenton process with the appropriate amount of Fe-Mn-Cu-Y as catalyst was developed and various operation conditions for the degradation of phenol were evaluated. The results indicated that by using the heterogeneous UV/Fenton process, the CODer removal rate reached almost 100% for wastewater containing phenol. Compared with the homogeneous process, the developed catalyst could be used at wider pH range in the UV/Fenton process. Comparison of various heterogeneous process showed that heterogeneous UV/Fenton process was best. The heterogeneous UV/Fenton process with Fe-Mn-Cu-Y catalyst is highly efficient in degrading various organic pollutants.  相似文献   

4.
An Fe-based amorphous alloy was found to significantly enhance the reductive degradation of an azo dye in aqueous solution. The surface-area normalized rate constant was up to 2.0 L m-2 min-1 at room temperature,an order of magnitude larger than any previously reported value. The activation energy of the degradation process was calculated according to the Arrhenius equation,and a much lower value than those previously reported was obtained. Valence band measurement indicated that a depressed valence band maximum and a widened empty band were established in the amorphous ribbon. The unique structure of the amorphous alloy is important-it may reduce the activation energy of the degradation process and enhance the activity of the electrons,thus accelerating the degradation process.  相似文献   

5.
Because of the potential carcinogenic effects and difficult degradation of azo dyes, their degradation has been a longstanding problem. The degradation of azo dye Direct Blue 6(DB6) using ball-milled(BM) high-entropy alloy(HEA) powders was characterized in this work. Newly designed AlFeMnTiM(M = Cr, Co, Ni) HEAs synthesized by mechanical alloying(MA) showed excellent performance in the degradation of azo dye DB6. The degradation efficiency of AlFeMnTiCr is approximately 19 times greater than that of the widely used commercial Fe–Si–B amorphous alloy ribbons and more than 100 times greater than that of the widely used commercial zero-valent iron(ZVI) powders. The galvanic-cell effect and the unique crystal structure are responsible for the good degradation performance of the BM HEAs. This study indicates that BM HEAs are attractive, valuable, and promising environmental catalysts for wastewater contaminated by azo dyes.  相似文献   

6.
Because of the potential carcinogenic effects and difficult degradation of azo dyes, their degradation has been a longstanding problem. The degradation of azo dye Direct Blue 6(DB6) using ball-milled(BM) high-entropy alloy(HEA) powders was characterized in this work. Newly designed AlFeMnTiM(M = Cr, Co, Ni) HEAs synthesized by mechanical alloying(MA) showed excellent performance in the degradation of azo dye DB6. The degradation efficiency of AlFeMnTiCr is approximately 19 times greater than that of the widely used commercial Fe–Si–B amorphous alloy ribbons and more than 100 times greater than that of the widely used commercial zero-valent iron(ZVI) powders. The galvanic-cell effect and the unique crystal structure are responsible for the good degradation performance of the BM HEAs. This study indicates that BM HEAs are attractive, valuable, and promising environmental catalysts for wastewater contaminated by azo dyes.  相似文献   

7.
A novel composite electrode was constructed by pressing together Co3O4 and graphite and it was used as the cathode in an electro-Fenton-like (EFL) system. The poor electron transport characteristic of Co3O4 was overcome by incorporating graphite. In situ electro-catalytic generation of hydroxyl radicals (·OH) occurred at high current efficiencies from pH 2-10, extending the traditional Fenton reaction pH range. Cyclic voltammetry and AC impedance spectrometry were used to characterize the composite electrode. The ability of the EFL system to degrade organic compounds was investigated using sulforhodamine B (SRB) and 2,4-dichlorophenol (2,4-DCP) as probes. Decoloration of SRB (1.0×10-5 mol/L) was complete (100%) in 150 min and SRB was effectively degraded from pH 2-10. The decomposition of SRB was studied using Fourier transform infrared spectroscopy (FT-IR) and total organic carbon (TOC) analysis and results indicated that the final degradation products were carbon dioxide, carboxylic acids and amines. The EFL system also decomposed 2,4-DCP and the degradation was 98.6% in 240 min. Electro-catalytic degradation of SRB occurs by a ·OH mechanism. After 5 times reused, the degradation rate of SRB did not significantly slow down. The electrode shows excellent potential for use in advanced oxidation processes (AOPs) used to treat persistent organic pollutants (POPs) in wastewater.  相似文献   

8.
The effects nf gas. pressure and temperature on the production of amorphous carbon nanotubes were investigated using an are discharging furnace at controlled temperature. Co/Ni alloy powder was used as catalyst. The discharge current was 80 A and voltage was 32 V The optimal parameters were obtained: 600℃ temperature, hydrogen gas and 500 torr pressure. The productivity and purity of amorphous carbon nanotubes are 6.5 gram per hour and 80%, respectively. The diameter of the amorphous carbon nanotubes is about 7—20 nm.  相似文献   

9.
A novel in-situ electrochemical oxidation method was applied to the degradation of wastewater containing chlorophenol. Under oxygen sparging, the strong oxidant, hydrogen dioxide, could be in-situ generated through the reduction of oxygen on the surface of the cathode. The removal rate ofchlorophenol could be increased 149% when oxygen was induced in the electrochemical cell. The promotion factor was estimated to be about 82.63% according to the pseudo-first-order reaction rate constant (min^-1). Important operating parameters such as current density, sparged oxygen rate were investigated. Higher sparged oxygen rate could improve the degradation of chlorophenol. To make full use of oxygen, however, sparged oxygen rate of 0.05 m3/h was adopted in this work. Oxidation-reduction potential could remarkably affect the generation of hydrogen peroxide. It was found that the removal rate of chlorophenol was not in direct proportion to the applied current density. The optimum current density was 3.5 mA/cm^2 when initial chlorophenol concentration was 100 mg/L and sparged oxygen rate was 0.05 m^3/h.  相似文献   

10.
The feasibility of combination process of jute degumming and bleaching with alkali-hydrogen peroxide in one-step-one-bath was discussed. The combination process basically has the similar function as the traditional two-step-two-bath method. The factors such as hydrogen peroxide concentration, CBI concentration, sodium hydroxide concentration, treatment time and temperature were studied respectively, and then an orthogonal experiment was designed to study the interactions among the hydrogen peroxide concentration, CBI concentration, sodium hydroxide concentration. After the designed experiments, the optimum treatment conditions were obtained as follows: hydrogen peroxide of 12g/L, sodium hydroxide of 4g/L, CBI of 4g/L, JFC of 1g/L, treatment time of 60min and temperature of 75℃.  相似文献   

11.
The corrosion-wear behavior of a nanocrystalline Fe88Si12 alloy disc coupled with a Si3N4 ball was investigated in acid (pH 3) and alkaline (pH 9) aqueous solutions. The dry wear was also measured for reference. The average friction coefficient of Fe88Si12 alloy in the pH 9 solution was approximately 0.2, which was lower than those observed for Fe88Si12 alloy in the pH 3 solution and in the case of dry wear. The fluctuation of the friction coefficient of samples subjected to the pH 9 solution also showed similar characteristics. The wear rate in the pH 9 solution slightly increased with increasing applied load. The wear rate was approximately one order of magnitude less than that in the pH 3 solution and was far lower than that in the case of dry wear, especially at high applied load. The wear traces of Fe88Si12 alloy under different wear conditions were examined and analyzed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The results indicated that the tribo-chemical reactions that involve oxidation of the worn surface and hydrolysis of the Si3N4 ball in the acid solution were restricted in the pH 9 aqueous solution. Thus, water lubrication can effectively improve the wear resistance of nanocrystalline Fe88Si12 alloy in the pH 9 aqueous solution.  相似文献   

12.
在CO2激光散光斑直径20mm的情况下,分别选择在不同功率静置的条件下辐照Fe78Si9B13非晶带实现部分晶化·用穆斯堡尔谱、X射线衍射和扫描电镜对原始非晶样品(Fe78Si9B13)和晶化后样品的微观结构进行了分析·结果表明:在CO2激光散光斑直径一定的条件下(20mm),分别选择激光功率250W和300W辐照非晶Fe78Si9B13样品20s,非晶样品可以实现约6%和9%的晶化·激光辐照非晶Fe78Si9B13合金的晶化相为αFe(Si),样品发生了织构现象,晶粒沿(200)面大量析出·激光晶化相产生在非晶带表面晶化层中·在其他条件一定的情况下,样品的晶化量随着激光功率的增加而增加·  相似文献   

13.
The effects of temperature on corrosion and the electrochemical behavior of Ni82.3Cr7Fe3Si4.5B3.2 glassy alloy in HCl, H2SO4, and H3PO4 acids were studied using AC and DC techniques. Impedance data reveal that the susceptibility to localized corrosion increases with increasing temperature. Potentiodynamic polarization curves reveal that the bulk glassy alloy is spontaneously passivated at all the investigated temperature in H2SO4 and H3PO4 solutions. A localized corrosion effect in HCl solution is clearly observed. The apparent activation energies in the regions of Tafel, active, and passive, as well as the enthalpies and entropies of the dissolution process were determined and discussed. The high apparent activation energy (Ea) value for H3PO4 solution in Tafel region is explained by the low aggressivity of PO43- ions.  相似文献   

14.
The influence of melt overheating on the viscosity of the melt and surface quality of the Fe_(78)Si_9B_(13) melt-spun ribbons have been studied by using oscillating vessel viscometry, X-ray diffraction, transmission electron microscopy, and field emission scanning electron microscopy. A critical temperature Tc(about 1350℃) of the melt transformation was determined via viscosity measurements during overheating and subsequent cooling processes. The Fe_(78)Si_9B_(13) amorphous ribbons were produced through planar flow melt spinning in the temperature range of 1300–1550℃. A detailed analysis of overheating effects on the melt viscosity and surface features of the as-spun ribbons were performed to rationalize the correlation between the melt state and surface quality of the ribbons. It was found that the enhanced homogeneity of the melt can be achieved by the overheating treatment higher than the critical temperature, which in turn improves the surface quality and thickness stability of the Fe_(78)Si_9B_(13) melt-spun ribbons.  相似文献   

15.
Fe_(78)Si_9B_(13)非晶合金的恒导磁性能   总被引:1,自引:0,他引:1  
研究了普通退火对Fe78Si9B13非晶合金磁性能的影响.实验发现:当合金内有适当数量的-αFe(Si)晶体相析出时,可形成感生磁各向异性,易磁化方向与带面垂直.经470℃×120 min和480℃×60 min退火后合金呈现良好的恒导磁特性.根据剩磁比Br/B800随退火温度和时间变化的规律,讨论了-αFe(Si)晶体相在表面层和基体内的晶化过程对源于磁弹性耦合作用的横向感生磁各向异性的影响:表面层的先期晶化促进横向感生磁各向异性形成;基体内晶体相析出减弱磁弹性耦合作用.  相似文献   

16.
The giant magnetocaloric effect Gd5Si2Ge2 alloy was prepared with 99wt% low purity commercial Gd. Powder XRD and magnetic measurements showed that the Gd5Si2Ge2 alloy annealed at 1200℃ for 1h had a significant magnetic- crystallographic first order phase transition at about 270 K. The maximal magnetic entropy change is 17.55 J· kg^-1· K^-1 under a magnetic field change of 0-5 T. The distinct increase of magnetic entropy change belongs to the first-order phase transition from the orthorhombic Gd5Si4-type to the monoclinic Gd5Si2Ge2-type after high temperature heat-treatment.  相似文献   

17.
In this work, network former SiO2 and network intermediate Al2O3 were introduced into typical low-melting binary compositions CaO·B2O3, CaO·2B2O3, and BaO·B2O3 via an aqueous solid-state suspension milling route. Accordingly, multiple-phase aluminosilicate glass-ceramics were directly obtained via liquid-phase sintering at temperatures below 950℃. On the basis of liquid-phase sintering theory, mineral-phase evolutions and glass-phase formations were systematically investigated in a wide MO-SiO2-Al2O3-B2O3 (M=Ca, Ba) composition range. The results indicate that major mineral phases of the aluminosilicate glass-ceramics are Al20B4O36, CaAl2Si2O8, and BaAl2Si2O8 and that the glass-ceramic materials are characterized by dense microstructures and excellent dielectric properties.  相似文献   

18.
The electrochemical oxidation capabilities of two high-performance electrodes, the boron-doped diamond film on Ti (Ti/BDD) and the lead oxide film on Ti (Ti/PbO2), were discussed. Hydroxyl radicals (·HO) generated on the electrode surface were detected by using p-nitrosodimethylaniline (RNO) as the trapping reagent. Electrochemical oxidation measurements, including the chemical oxygen demand (COD) removal and the current efficiency (CE), were carried out via the degradation of p-nitrophenol (PNP) under the galvanostatic condition. The results indicate that an indirect reaction, which is attributed to free hydroxyl radicals with high activation, conducts on the Ti/BDD electrode, while the absorbed hydroxyl radicals generated at the Ti/PbO2 surface results in low degradation efficiency. Due to quick mineralization which combusts PNP to CO2 and H2O absolutely by the active hydroxyl radical directly, the CE obtained on the Ti/BDD electrode is much higher than that on the Ti/PbO2 electrode, notwithstanding the number of hydroxyl radicals produced on PbO2 is higher than that on the BDD surface.  相似文献   

19.
The main objective of this paper was to fabricate Cu10Sn5Ni alloy and its composites reinforced with various contents of Si3N4 particles (5wt%, 10wt%, and 15wt%) and to investigate their dry sliding wear behavior using a pin-on-disk tribometer. Microstructural examinations of the specimens revealed a uniform dispersion of Si3N4 particles in the copper matrix. Wear experiments were performed for all combinations of parameters, such as load (10, 20, and 30 N), sliding distance (500, 1000, and 1500 m), and sliding velocity (1, 2, and 3 m/s), for the alloy and the composites. The results revealed that wear rate increased with increasing load and increasing sliding distance, whereas the wear rate decreased and then increased with increasing sliding velocity. The primary wear mechanism encountered at low loads was mild adhesive wear, whereas that at high loads was severe delamination wear. An oxide layer was formed at low velocities, whereas a combination of shear and plastic deformation occurred at high velocities. The mechanism at short sliding distances was ploughing action of Si3N4 particles, which act as protrusions; by contrast, at long sliding distances, direct metal-metal contact occurred. Among the investigated samples, the Cu/10wt% Si3N4 composite exhibited the best wear resistance at a load of 10 N, a velocity of 2 m/s, and a sliding distance of 500 m.  相似文献   

20.
Relationships between the coercivity of hydrogenation disproportionation desorption recombination (HDDR) Nd12.5Fe81.5−x Co6B x bonded magnets and boron content were investigated. Nd2Fe17 phase with planar magnetic anisotropy is present in the microstructure when x= 4at%–5.88at%, which does not reduce the coercivity of the bonded magnets. High-resolution transmission electron microscopy (TEM) images show that Nd2Fe17 phase exists in the form of nanocrystals in the Nd2Fe14B matrix. There is an exchange-coupling interaction between the two phases so that the coercivity of HDDR Nd12.5Fe81.5−x Co6B x bonded magnets is hardly reduced with a decrease in boron content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号