首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The generation of new neurons from neural stem cells is restricted to two regions of the adult mammalian central nervous system: the subventricular zone of the lateral ventricle, and the subgranular zone of the hippocampal dentate gyrus. In both regions, signals provided by the microenvironment regulate the maintenance, proliferation and neuronal fate commitment of the local stem cell population. The identity of these signals is largely unknown. Here we show that adult hippocampal stem/progenitor cells (AHPs) express receptors and signalling components for Wnt proteins, which are key regulators of neural stem cell behaviour in embryonic development. We also show that the Wnt/beta-catenin pathway is active and that Wnt3 is expressed in the hippocampal neurogenic niche. Overexpression of Wnt3 is sufficient to increase neurogenesis from AHPs in vitro and in vivo. By contrast, blockade of Wnt signalling reduces neurogenesis from AHPs in vitro and abolishes neurogenesis almost completely in vivo. Our data show that Wnt signalling is a principal regulator of adult hippocampal neurogenesis and provide evidence that Wnt proteins have a role in adult hippocampal function.  相似文献   

2.
C E Dann  J C Hsieh  A Rattner  D Sharma  J Nathans  D J Leahy 《Nature》2001,412(6842):86-90
Members of the Frizzled family of seven-pass transmembrane proteins serve as receptors for Wnt signalling proteins. Wnt proteins have important roles in the differentiation and patterning of diverse tissues during animal development, and inappropriate activation of Wnt signalling pathways is a key feature of many cancers. An extracellular cysteine-rich domain (CRD) at the amino terminus of Frizzled proteins binds Wnt proteins, as do homologous domains in soluble proteins-termed secreted Frizzled-related proteins-that function as antagonists of Wnt signalling. Recently, an LDL-receptor-related protein has been shown to function as a co-receptor for Wnt proteins and to bind to a Frizzled CRD in a Wnt-dependent manner. To investigate the molecular nature of the Wnt signalling complex, we determined the crystal structures of the CRDs from mouse Frizzled 8 and secreted Frizzled-related protein 3. Here we show a previously unknown protein fold, and the design and interpretation of CRD mutations that identify a Wnt-binding site. CRDs exhibit a conserved dimer interface that may be a feature of Wnt signalling. This work provides a framework for studies of homologous CRDs in proteins including muscle-specific kinase and Smoothened, a component of the Hedgehog signalling pathway.  相似文献   

3.
4.
Hedgehog acts as a somatic stem cell factor in the Drosophila ovary   总被引:12,自引:0,他引:12  
Zhang Y  Kalderon D 《Nature》2001,410(6828):599-604
Secreted signalling molecules of the Hedgehog (Hh) family have many essential patterning roles during development of diverse organisms including Drosophila and humans. Although Hedgehog proteins most commonly affect cell fate, they can also stimulate cell proliferation. In humans several distinctive cancers, including basal-cell carcinoma, result from mutations that aberrantly activate Hh signal transduction. In Drosophila, Hh directly stimulates proliferation of ovarian somatic cells. Here we show that Hh acts specifically on stem cells in the Drosophila ovary. These cells cannot proliferate as stem cells in the absence of Hh signalling, whereas excessive Hh signalling produces supernumerary stem cells. We deduce that Hh is a stem-cell factor and suggest that human cancers due to excessive Hh signalling might result from aberrant expansion of stem cell pools.  相似文献   

5.
The Wnt proteins constitute a large family of extracellular signalling molecules that are found throughout the animal kingdom and are important for a wide variety of normal and pathological developmental processes. Here we describe Wnt-inhibitory factor-1 (WIF-1), a secreted protein that binds to Wnt proteins and inhibits their activities. WIF-1 is present in fish, amphibia and mammals, and is expressed during Xenopus and zebrafish development in a complex pattern that includes paraxial presomitic mesoderm, notochord, branchial arches and neural crest derivatives. We use Xenopus embryos to show that WIF-1 overexpression affects somitogenesis (the generation of trunk mesoderm segments), in agreement with its normal expression in paraxial mesoderm. In vitro, WIF-1 binds to Drosophila Wingless and Xenopus Wnt8 produced by Drosophila S2 cells. Together with earlier results obtained with the secreted Frizzled-related proteins, our results indicate that Wnt proteins interact with structurally diverse extracellular inhibitors, presumably to fine-tune the spatial and temporal patterns of Wnt activity.  相似文献   

6.
Wnt signalling in stem cells and cancer   总被引:3,自引:0,他引:3  
Reya T  Clevers H 《Nature》2005,434(7035):843-850
The canonical Wnt cascade has emerged as a critical regulator of stem cells. In many tissues, activation of Wnt signalling has also been associated with cancer. This has raised the possibility that the tightly regulated self-renewal mediated by Wnt signalling in stem and progenitor cells is subverted in cancer cells to allow malignant proliferation. Insights gained from understanding how the Wnt pathway is integrally involved in both stem cell and cancer cell maintenance and growth in the intestinal, epidermal and haematopoietic systems may serve as a paradigm for understanding the dual nature of self-renewal signals.  相似文献   

7.
J M Peters  R M McKay  J P McKay  J M Graff 《Nature》1999,401(6751):345-350
The Wnt signalling cascade is essential for the development of both invertebrates and vertebrates, and is altered during tumorigenesis. Although a general framework for Wnt signalling has been elucidated, not all of the components have been identified. Here we describe a serine kinase, casein kinase I (CKI), which was isolated by expression cloning in Xenopus embryos. CKI reproduces several properties of Wnt signals, including generation of complete dorsal axes, stabilization of beta-catenin and induction of genes that are direct targets of Wnt signals. Dominant-negative forms of CKI and a pharmacological blocker of CKI inhibited Wnt signals in Xenopus. Inhibiting CKI in Caenorhabditis elegans generated worms with a mom phenotype, indicative of a loss of Wnt signals. In addition, CKI bound to and increased the phosphorylation of dishevelled, a known component of the Wnt pathway. These data indicate that CKI may be a conserved component of the Wnt pathway.  相似文献   

8.
A role for Wnt signalling in self-renewal of haematopoietic stem cells   总被引:92,自引:0,他引:92  
Haematopoietic stem cells (HSCs) have the ability to renew themselves and to give rise to all lineages of the blood; however, the signals that regulate HSC self-renewal remain unclear. Here we show that the Wnt signalling pathway has an important role in this process. Overexpression of activated beta-catenin expands the pool of HSCs in long-term cultures by both phenotype and function. Furthermore, HSCs in their normal microenvironment activate a LEF-1/TCF reporter, which indicates that HCSs respond to Wnt signalling in vivo. To demonstrate the physiological significance of this pathway for HSC proliferation we show that the ectopic expression of axin or a frizzled ligand-binding domain, inhibitors of the Wnt signalling pathway, leads to inhibition of HSC growth in vitro and reduced reconstitution in vivo. Furthermore, activation of Wnt signalling in HSCs induces increased expression of HoxB4 and Notch1, genes previously implicated in self-renewal of HSCs. We conclude that the Wnt signalling pathway is critical for normal HSC homeostasis in vitro and in vivo, and provide insight into a potential molecular hierarchy of regulation of HSC development.  相似文献   

9.
The intestinal tract maintains proper function by replacing aged cells with freshly produced cells that arise from a population of self-renewing intestinal stem cells (ISCs). In the mammalian intestine, ISC self renewal, amplification and differentiation take place along the crypt-villus axis, and are controlled by the Wnt and hedgehog (Hh) signalling pathways. However, little is known about the mechanisms that specify ISCs within the developing intestinal epithelium, or about the signalling centres that help maintain them in their self-renewing stem cell state. Here we show that in adult Drosophila melanogaster, ISCs of the posterior intestine (hindgut) are confined to an anterior narrow segment, which we name the hindgut proliferation zone (HPZ). Within the HPZ, self renewal of ISCs, as well as subsequent proliferation and differentiation of ISC descendants, are controlled by locally emanating Wingless (Wg, a Drosophila Wnt homologue) and Hh signals. The anteriorly restricted expression of Wg in the HPZ acts as a niche signal that maintains cells in a slow-cycling, self-renewing mode. As cells divide and move posteriorly away from the Wg source, they enter a phase of rapid proliferation. During this phase, Hh signal is required for exiting the cell cycle and the onset of differentiation. The HPZ, with its characteristic proliferation dynamics and signalling properties, is set up during the embryonic phase and becomes active in the larva, where it generates all adult hindgut cells including ISCs. The mechanism and genetic control of cell renewal in the Drosophila HPZ exhibits a large degree of similarity with what is seen in the mammalian intestine. Our analysis of the Drosophila HPZ provides an insight into the specification and control of stem cells, highlighting the way in which the spatial pattern of signals that promote self renewal, growth and differentiation is set up within a genetically tractable model system.  相似文献   

10.
The Wnt family of secreted molecules functions in cell-fate determination and morphogenesis during development in both vertebrates and invertebrates (reviewed in ref. 1). Drosophila Wingless is a founding member of this family, and many components of its signal transduction cascade have been identified, including the Frizzled class of receptor. But the mechanism by which the Wingless signal is received and transduced across the membrane is not completely understood. Here we describe a gene that is necessary for all Wingless signalling events in Drosophila. We show that arrow gene function is essential in cells receiving Wingless input and that it acts upstream of Dishevelled. arrow encodes a single-pass transmembrane protein, indicating that it may be part of a receptor complex with Frizzled class proteins. Arrow is a low-density lipoprotein (LDL)-receptor-related protein (LRP), strikingly homologous to murine and human LRP5 and LRP6. Thus, our data suggests a new and conserved function for this LRP subfamily in Wingless/Wnt signal reception.  相似文献   

11.
Continuous turnover of epithelia is ensured by the extensive self-renewal capacity of tissue-specific stem cells. Similarly, epithelial tumour maintenance relies on cancer stem cells (CSCs), which co-opt stem cell properties. For most tumours, the cellular origin of these CSCs and regulatory pathways essential for sustaining stemness have not been identified. In murine skin, follicular morphogenesis is driven by bulge stem cells that specifically express CD34. Here we identify a population of cells in early epidermal tumours characterized by phenotypic and functional similarities to normal bulge skin stem cells. This population contains CSCs, which are the only cells with tumour initiation properties. Transplants derived from these CSCs preserve the hierarchical organization of the primary tumour. We describe beta-catenin signalling as being essential in sustaining the CSC phenotype. Ablation of the beta-catenin gene results in the loss of CSCs and complete tumour regression. In addition, we provide evidence for the involvement of increased beta-catenin signalling in malignant human squamous cell carcinomas. Because Wnt/beta-catenin signalling is not essential for normal epidermal homeostasis, such a mechanistic difference may thus be targeted to eliminate CSCs and consequently eradicate squamous cell carcinomas.  相似文献   

12.
Clements WK  Kim AD  Ong KG  Moore JC  Lawson ND  Traver D 《Nature》2011,474(7350):220-224
Haematopoietic stem cells (HSCs) are a self-renewing population of cells that continuously replenish all blood and immune cells during the lifetime of an individual. HSCs are used clinically to treat a wide array of diseases, including acute leukaemias and congenital blood disorders, but obtaining suitable numbers of cells and finding immune-compatible donors remain serious problems. These difficulties have led to an interest in the conversion of embryonic stem cells or induced pluripotent stem cells into HSCs, which is not possible using current methodologies. To accomplish this goal, it is critical to understand the native mechanisms involved in the specification of HSCs during embryonic development. Here we demonstrate in zebrafish that Wnt16 controls a novel genetic regulatory network required for HSC specification. Non-canonical signalling by Wnt16 is required for somitic expression of the Notch ligands deltaC (dlc) and deltaD (dld), and these ligands are, in turn, required for the establishment of definitive haematopoiesis. Notch signalling downstream of Dlc and Dld is earlier than, and distinct from, known cell-autonomous requirements for Notch, strongly suggesting that novel Notch-dependent relay signal(s) induce the first HSCs in parallel to other established pathways. Our results demonstrate that somite-specific gene expression is required for the production of haemogenic endothelium.  相似文献   

13.
Davidson G  Wu W  Shen J  Bilic J  Fenger U  Stannek P  Glinka A  Niehrs C 《Nature》2005,438(7069):867-872
Signalling by Wnt proteins (Wingless in Drosophila) has diverse roles during embryonic development and in adults, and is implicated in human diseases, including cancer. LDL-receptor-related proteins 5 and 6 (LRP5 and LRP6; Arrow in Drosophila) are key receptors required for transmission of Wnt/beta-catenin signalling in metazoa. Although the role of these receptors in Wnt signalling is well established, their coupling with the cytoplasmic signalling apparatus remains poorly defined. Using a protein modification screen for regulators of LRP6, we describe the identification of Xenopus Casein kinase 1 gamma (CK1gamma), a membrane-bound member of the CK1 family. Gain-of-function and loss-of-function experiments show that CK1gamma is both necessary and sufficient to transduce LRP6 signalling in vertebrates and Drosophila cells. In Xenopus embryos, CK1gamma is required during anterio-posterior patterning to promote posteriorizing Wnt/beta-catenin signalling. CK1gamma is associated with LRP6, which has multiple, modular CK1 phosphorylation sites. Wnt treatment induces the rapid CK1gamma-mediated phosphorylation of these sites within LRP6, which, in turn, promotes the recruitment of the scaffold protein Axin. Our results reveal an evolutionarily conserved mechanism that couples Wnt receptor activation to the cytoplasmic signal transduction apparatus.  相似文献   

14.
Mao B  Wu W  Davidson G  Marhold J  Li M  Mechler BM  Delius H  Hoppe D  Stannek P  Walter C  Glinka A  Niehrs C 《Nature》2002,417(6889):664-667
The Wnt family of secreted glycoproteins mediate cell cell interactions during cell growth and differentiation in both embryos and adults. Canonical Wnt signalling by way of the beta-catenin pathway is transduced by two receptor families. Frizzled proteins and lipoprotein-receptor-related proteins 5 and 6 (LRP5/6) bind Wnts and transmit their signal by stabilizing intracellular beta-catenin. Wnt/beta-catenin signalling is inhibited by the secreted protein Dickkopf1 (Dkk1), a member of a multigene family, which induces head formation in amphibian embryos. Dkk1 has been shown to inhibit Wnt signalling by binding to and antagonizing LRP5/6. Here we show that the transmembrane proteins Kremen1 and Kremen2 are high-affinity Dkk1 receptors that functionally cooperate with Dkk1 to block Wnt/beta-catenin signalling. Kremen2 forms a ternary complex with Dkk1 and LRP6, and induces rapid endocytosis and removal of the Wnt receptor LRP6 from the plasma membrane. The results indicate that Kremen1 and Kremen2 are components of a membrane complex modulating canonical Wnt signalling through LRP6 in vertebrates.  相似文献   

15.
Insulin-like growth-factor-binding proteins (IGFBPs) bind to and modulate the actions of insulin-like growth factors (IGFs). Although some of the actions of IGFBPs have been reported to be independent of IGFs, the precise mechanisms of IGF-independent actions of IGFBPs are largely unknown. Here we report a previously unknown function for IGFBP-4 as a cardiogenic growth factor. IGFBP-4 enhanced cardiomyocyte differentiation in vitro, and knockdown of Igfbp4 attenuated cardiomyogenesis both in vitro and in vivo. The cardiogenic effect of IGFBP-4 was independent of its IGF-binding activity but was mediated by the inhibitory effect on canonical Wnt signalling. IGFBP-4 physically interacted with a Wnt receptor, Frizzled 8 (Frz8), and a Wnt co-receptor, low-density lipoprotein receptor-related protein 6 (LRP6), and inhibited the binding of Wnt3A to Frz8 and LRP6. Although IGF-independent, the cardiogenic effect of IGFBP-4 was attenuated by IGFs through IGFBP-4 sequestration. IGFBP-4 is therefore an inhibitor of the canonical Wnt signalling required for cardiogenesis and provides a molecular link between IGF signalling and Wnt signalling.  相似文献   

16.
An LDL-receptor-related protein mediates Wnt signalling in mice   总被引:36,自引:0,他引:36  
Pinson KI  Brennan J  Monkley S  Avery BJ  Skarnes WC 《Nature》2000,407(6803):535-538
Wnt genes comprise a large family of secreted polypeptides that are expressed in spatially and tissue-restricted patterns during vertebrate embryonic development. Mutational analysis in mice has shown the importance of Wnts in controlling diverse developmental processes such as patterning of the body axis, central nervous system and limbs, and the regulation of inductive events during organogenesis. Although many components of the Wnt signalling pathway have been identified, little is known about how Wnts and their cognate Frizzled receptors signal to downstream effector molecules. Here we present evidence that a new member of the low-density lipoprotein (LDL)-receptor-related protein family, LRP6 (ref. 3), is critical for Wnt signalling in mice. Embryos homozygous for an insertion mutation in the LRP6 gene exhibit developmental defects that are a striking composite of those caused by mutations in individual Wnt genes. Furthermore, we show a genetic enhancement of a Wnt mutant phenotype in mice lacking one functional copy of LRP6. Together, our results support a broad role for LRP6 in the transduction of several Wnt signals in mammals.  相似文献   

17.
The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals   总被引:16,自引:0,他引:16  
Cowan CA  Henkemeyer M 《Nature》2001,413(6852):174-179
Bidirectional signals mediated by membrane-anchored ephrins and Eph receptor tyrosine kinases have important functions in cell-cell recognition events, including those that occur during axon pathfinding and hindbrain segmentation. The reverse signal that is transduced into B-ephrin-expressing cells is thought to involve tyrosine phosphorylation of the signal's short, conserved carboxy-terminal cytoplasmic domain. The Src-homology-2 (SH2) domain proteins that associate with activated tyrosine-phosphorylated B-subclass ephrins have not been identified, nor has a defined cellular response to reverse signals been described. Here we show that the SH2/SH3 domain adaptor protein Grb4 binds to the cytoplasmic domain of B ephrins in a phosphotyrosine-dependent manner. In response to B-ephrin reverse signalling, cells increase FAK catalytic activity, redistribute paxillin, lose focal adhesions, round up, and disassemble F-actin-containing stress fibres. These cellular responses can be blocked in a dominant-negative fashion by expression of the isolated Grb4 SH2 domain. The Grb4 SH3 domains bind a unique set of other proteins that are implicated in cytoskeletal regulation, including the Cbl-associated protein (CAP/ponsin), the Abl-interacting protein-1 (Abi-1), dynamin, PAK1, hnRNPK and axin. These data provide a biochemical pathway whereby cytoskeletal regulators are recruited to Eph-ephrin bidirectional signalling complexes.  相似文献   

18.
LGR5+ stem cells reside at crypt bottoms, intermingled with Paneth cells that provide Wnt, Notch and epidermal growth factor signals. Here we find that the related RNF43 and ZNRF3 transmembrane E3 ubiquitin ligases are uniquely expressed in LGR5+ stem cells. Simultaneous deletion of the two genes encoding these proteins in the intestinal epithelium of mice induces rapidly growing adenomas containing high numbers of Paneth and LGR5+ stem cells. In vitro, growth of organoids derived from these adenomas is arrested when Wnt secretion is inhibited, indicating a dependence of the adenoma stem cells on Wnt produced by adenoma Paneth cells. In the HEK293T human cancer cell line, expression of RNF43 blocks Wnt responses and targets surface-expressed frizzled receptors to lysosomes. In the RNF43-mutant colorectal cancer cell line HCT116, reconstitution of RNF43 expression removes its response to exogenous Wnt. We conclude that RNF43 and ZNRF3 reduce Wnt signals by selectively ubiquitinating frizzled receptors, thereby targeting these Wnt receptors for degradation.  相似文献   

19.
20.
LDL-receptor-related proteins in Wnt signal transduction   总被引:58,自引:0,他引:58  
Tamai K  Semenov M  Kato Y  Spokony R  Liu C  Katsuyama Y  Hess F  Saint-Jeannet JP  He X 《Nature》2000,407(6803):530-535
The Wnt family of secreted signalling molecules are essential in embryo development and tumour formation. The Frizzled (Fz) family of serpentine receptors function as Wnt receptors, but how Fz proteins transduce signalling is not understood. In Drosophila, arrow phenocopies the wingless (DWnt-1) phenotype, and encodes a transmembrane protein that is homologous to two members of the mammalian low-density lipoprotein receptor (LDLR)-related protein (LRP) family, LRP5 and LRP6 (refs 12-15). Here we report that LRP6 functions as a co-receptor for Wnt signal transduction. In Xenopus embryos, LRP6 activated Wnt-Fz signalling, and induced Wnt responsive genes, dorsal axis duplication and neural crest formation. An LRP6 mutant lacking the carboxyl intracellular domain blocked signalling by Wnt or Wnt-Fz, but not by Dishevelled or beta-catenin, and inhibited neural crest development. The extracellular domain of LRP6 bound Wnt-1 and associated with Fz in a Wnt-dependent manner. Our results indicate that LRP6 may be a component of the Wnt receptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号