首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Tsaousis AD  Kunji ER  Goldberg AV  Lucocq JM  Hirt RP  Embley TM 《Nature》2008,453(7194):553-556
Mitochondria use transport proteins of the eukaryotic mitochondrial carrier family (MCF) to mediate the exchange of diverse substrates, including ATP, with the host cell cytosol. According to classical endosymbiosis theory, insertion of a host-nuclear-encoded MCF transporter into the protomitochondrion was the key step that allowed the host cell to harvest ATP from the enslaved endosymbiont. Notably the genome of the microsporidian Encephalitozoon cuniculi has lost all of its genes for MCF proteins. This raises the question of how the recently discovered microsporidian remnant mitochondrion, called a mitosome, acquires ATP to support protein import and other predicted ATP-dependent activities. The E. cuniculi genome does contain four genes for an unrelated type of nucleotide transporter used by plastids and bacterial intracellular parasites, such as Rickettsia and Chlamydia, to import ATP from the cytosol of their eukaryotic host cells. The inference is that E. cuniculi also uses these proteins to steal ATP from its eukaryotic host to sustain its lifestyle as an obligate intracellular parasite. Here we show that, consistent with this hypothesis, all four E. cuniculi transporters can transport ATP, and three of them are expressed on the surface of the parasite when it is living inside host cells. The fourth transporter co-locates with mitochondrial Hsp70 to the E. cuniculi mitosome. Thus, uniquely among eukaryotes, the traditional relationship between mitochondrion and host has been subverted in E. cuniculi, by reductive evolution and analogous gene replacement. Instead of the mitosome providing the parasite cytosol with ATP, the parasite cytosol now seems to provide ATP for the organelle.  相似文献   

2.
Nagamune K  Hicks LM  Fux B  Brossier F  Chini EN  Sibley LD 《Nature》2008,451(7175):207-210
Calcium controls a number of critical events, including motility, secretion, cell invasion and egress by apicomplexan parasites. Compared to animal and plant cells, the molecular mechanisms that govern calcium signalling in parasites are poorly understood. Here we show that the production of the phytohormone abscisic acid (ABA) controls calcium signalling within the apicomplexan parasite Toxoplasma gondii, an opportunistic human pathogen. In plants, ABA controls a number of important events, including environmental stress responses, embryo development and seed dormancy. ABA induces production of the second-messenger cyclic ADP ribose (cADPR), which controls release of intracellular calcium stores in plants. cADPR also controls intracellular calcium release in the protozoan parasite T. gondii; however, previous studies have not revealed the molecular basis of this pathway. We found that addition of exogenous ABA induced formation of cADPR in T. gondii, stimulated calcium-dependent protein secretion, and induced parasite egress from the infected host cell in a density-dependent manner. Production of endogenous ABA within the parasite was confirmed by purification (using high-performance liquid chromatography) and analysis (by gas chromatography-mass spectrometry). Selective disruption of ABA synthesis by the inhibitor fluridone delayed egress and induced development of the slow-growing, dormant cyst stage of the parasite. Thus, ABA-mediated calcium signalling controls the decision between lytic and chronic stage growth, a developmental switch that is central in pathogenesis and transmission. The pathway for ABA production was probably acquired with an algal endosymbiont that was retained as a non-photosynthetic plastid known as the apicoplast. The plant-like nature of this pathway may be exploited therapeutically, as shown by the ability of a specific inhibitor of ABA synthesis to prevent toxoplasmosis in the mouse model.  相似文献   

3.
Phagosome acidification blocked by intracellular Toxoplasma gondii   总被引:4,自引:0,他引:4  
L D Sibley  E Weidner  J L Krahenbuhl 《Nature》1985,315(6018):416-419
Toxoplasma gondii belongs to a group of highly virulent intracellular parasites that reside in host cell vacuoles which resist typical phagosome-lysosome fusion. Live Toxoplasma replicate prodigiously within modified phagocytic vacuoles formed during invagination of the host plasma membrane. In contrast, heat-killed Toxoplasma or specific antibody (heat-inactivated)-coated live Toxoplasma-containing vacuoles readily undergo lysosome fusion and digestion in normal macrophages. Of newly recognized significance to Toxoplasma survival is the microbicidal effect of phagosome acidification, which reportedly can occur independently of fusion with other acidic vesicles. We report here that modified live Toxoplasma-containing vacuoles fail to acidify in normal macrophages, as indicated by the sensitive pH probe fluorescein. In contrast, when live Toxoplasma are coated with specific antibody (heat-inactivated), they trigger phagosome acidification when entering normal macrophages. A similar acidification is observed when normal phagocytes ingest dead Toxoplasma. Extracellular Toxoplasma are highly susceptible to acidic pH conditions, indicating that the acidification block in the modified vacuoles may be important for intracellular survival.  相似文献   

4.
5.
Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described, and it provides an opportunity for comparison with the recently completed P. vivax genome and other sequenced Plasmodium genomes. In contrast to other Plasmodium genomes, putative variant antigen families are dispersed throughout the genome and are associated with intrachromosomal telomere repeats. One of these families, the KIRs, contains sequences that collectively match over one-half of the host CD99 extracellular domain, which may represent an unusual form of molecular mimicry.  相似文献   

6.
Recker M  Nee S  Bull PC  Kinyanjui S  Marsh K  Newbold C  Gupta S 《Nature》2004,429(6991):555-558
The malaria parasite Plasmodium falciparum has evolved to prolong its duration of infection by antigenic variation of a major immune target on the surface of the infected red blood cell. This immune evasion strategy depends on the sequential, rather than simultaneous, appearance of immunologically distinct variants. Although the molecular mechanisms by which a single organism switches between variants are known in part, it remains unclear how an entire population of parasites within the host can synchronize expression to avoid rapidly exhausting the variant repertoire. Here we show that short-lived, partially cross-reactive immune responses to parasite-infected erythrocyte surface antigens can produce a cascade of sequentially dominant antigenic variants, each of which is the most immunologically distinct from its preceding types. This model reconciles several previously unexplained and apparently conflicting epidemiological observations by demonstrating that individuals with stronger cross-reactive immune responses can, paradoxically, be more likely to sustain chronic infections. Antigenic variation has always been seen as an adaptation of the parasite to evade host defence: we show that the coordination necessary for the success of this strategy might be provided by the host.  相似文献   

7.
8.
Fox BA  Bzik DJ 《Nature》2002,415(6874):926-929
Toxoplasma gondii is a ubiquitous protozoan parasite that is responsible for severe congenital birth defects and fatal toxoplasmic encephalitis in immunocompromized people. Fundamental aspects of obligate intracellular replication and pathogenesis are only now beginning to emerge for protozoan parasites. T. gondii has a fragmented pathway for salvaging pyrimidine nucleobases derived from the parasite or host cell, and this limited pyrimidine salvage capacity is funnelled exclusively through uracil phosphoribosyltransferase. Disrupting the function of this enzyme does not affect the growth of T. gondii tachyzoites, which suggests that the de novo pyrimidine biosynthesis pathway may be necessary for growth. We have examined the virulence of T. gondii mutants that lack carbamoyl phosphate synthetase II (uracil auxotrophs) to determine whether de novo pyrimidine biosynthesis is required in vivo. Here we show that T. gondii uracil auxotrophs are completely avirulent not only in immune-competent BALB/c mice but also in mice that lack interferon-gamma. A single injection of the uracil auxotroph into BALB/c mice induces long-term protective immunity to toxoplasmosis. Our findings indicate the significance of the de novo pyrimidine biosynthesis pathway for the virulence of parasitic protozoa, and suggest routes for developing vaccines and chemotherapy.  相似文献   

9.
D M Mosser  P J Edelson 《Nature》1987,327(6120):329-331
Leishmania are obligate intracellular parasites of mononuclear phagocytes. We and others have shown that the promastigote form of all species of leishmania activates complement from non-immune serum and that this activation can result in parasite lysis. This work, as well as earlier in vivo studies, suggested that complement is an important component of host defence against leishmaniasis. We now present evidence that parasite complement fixation, in addition to increasing parasite phagocytosis, is required for the intracellular survival of leishmania in macrophages. We specifically show a strong correlation between parasite C3 fixation and intracellular survival. We attribute this survival, in part, to a decrease in the magnitude of the macrophage respiratory burst which is triggered by complement-coated, as opposed to uncoated, parasites.  相似文献   

10.
As the malaria parasite, Plasmodium falciparum, grows within its host erythrocyte it induces an increase in the permeability of the erythrocyte membrane to a range of low-molecular-mass solutes, including Na+ and K+ (ref. 1). This results in a progressive increase in the concentration of Na+ in the erythrocyte cytosol. The parasite cytosol has a relatively low Na+ concentration and there is therefore a large inward Na+ gradient across the parasite plasma membrane. Here we show that the parasite exploits the Na+ electrochemical gradient to energize the uptake of inorganic phosphate (P(i)), an essential nutrient. P(i) was taken up into the intracellular parasite by a Na+-dependent transporter, with a stoichiometry of 2Na+:1P(i) and with an apparent preference for the monovalent over the divalent form of P(i). A P(i) transporter (PfPiT) belonging to the PiT family was cloned from the parasite and localized to the parasite surface. Expression of PfPiT in Xenopus oocytes resulted in Na+-dependent P(i) uptake with characteristics similar to those observed for P(i) uptake in the parasite. This study provides new insight into the significance of the malaria-parasite-induced alteration of the ionic composition of its host cell.  相似文献   

11.
Bacteria living within eukaryotic cells can be essential for the survival or reproduction of the host but in other cases are among the most successful pathogens. Environmental Chlamydiae, including strain UWE25, thrive as obligate intracellular symbionts within protozoa; are recently discovered relatives of major bacterial pathogens of humans; and also infect human cells. Genome analysis of UWE25 predicted that this symbiont is unable to synthesize the universal electron carrier nicotinamide adenine dinucleotide (NAD+). Compensation of limited biosynthetic capacity in intracellular bacteria is usually achieved by import of primary metabolites. Here, we report the identification of a candidate transporter protein from UWE25 that is highly specific for import of NAD+ when synthesized heterologously in Escherichia coli. The discovery of this candidate NAD+/ADP exchanger demonstrates that intact NAD+ molecules can be transported through cytoplasmic membranes. This protein acts together with a newly discovered nucleotide transporter and an ATP/ADP translocase, and allows UWE25 to exploit its host cell by means of a sophisticated metabolic parasitism.  相似文献   

12.
D S Peterson  R A Wrightsman  J E Manning 《Nature》1986,322(6079):566-568
The parasitic protozoan Trypanosoma cruzi can establish infection in humans and other vertebrate hosts through direct penetration of host cells by trypomastigotes transmitted by the insect vector. Although the molecular processes involved in trypomastigote interiorization of vertebrate cells are unknown, several studies suggest that surface glycoproteins are involved. It is likely that the proteins involved are specific to the trypomastigote stage of the parasite, since only trypomastigotes found in both the insect vector and the vertebrate host bloodstream are capable of invading vertebrate cells. In contrast, the epimastigote stage, found exclusively in the vector, and the amastigote stage, an intracellular stage in the vertebrate host, cannot penetrate the cell directly. We have therefore concentrated our efforts on trypomastigote surface proteins and, along with others, have identified two trypomastigote-specific surface glycoproteins of relative molecular mass (Mr) 90,000 (90K) and 85,000 (85K). Antibody neutralization experiments indicate that the 85K glycoprotein is necessary for efficient interiorization of trypomastigotes in mammalian cells. Here we describe the molecular cloning of a genomic DNA fragment that encodes antigenic determinants present in the 85K trypomastigote surface antigen. The polypeptide fragment encoded by the cloned DNA is recognized by serum from a T. cruzi-infected host and is inferred by DNA sequence analysis to contain a nonapeptide unit that is tandemly repeated five times. Also, the messenger complementary to the cloned DNA fragment is present only in the trypomastigote stage of the parasite.  相似文献   

13.
家蚕微孢子虫(Nosema bombycis)是引起家蚕微粒子病的病原,是一种无线粒体的专性细胞内寄生的原虫.将N.bombycis经KOH处理后,接种于家蚕胚胎细胞(BmE细胞)和草地贪夜蛾卵巢细胞(Sf21).用倒置显微镜对微孢子虫在宿主细胞中感染增殖过程中的形态变化进行了跟踪观察,比较两种细胞接种N.bombycis后所出现的形态学变化.接种后第12天起,两种细胞内均充满不同发育阶段的孢子,并可见大量的胞外游动.在感染晚期,Sf21中有许多孢子从细胞中逸出,留下许多空泡,细胞还保持一定的完整性,而家蚕胚胎细胞则在感染后期完全崩解.这种差异可能是Sf21作为一种非原宿主细胞,对N.bombycis的感染有一定耐受性有关.  相似文献   

14.
Starr DJ  Cline TW 《Nature》2002,418(6893):76-79
The cytoplasmically inherited bacterium Wolbachia pipientis is a widespread parasite of arthropods that manipulates the reproductive biology of its hosts, often to their detriment, in order to foster its own transmission through egg cytoplasm. Here we report that infection by Wolbachia restores fertility to Drosophila melanogaster mutant females prevented from making eggs by protein-coding lesions in Sex-lethal (Sxl), the master regulator of sex determination. Suppression of sterility by Wolbachia discriminates markedly among similar germline-specific Sxl alleles, and is not observed for mutations in other genes that produce similar 'tumorous ovary' phenotypes, including one that blocks Sxl germline expression. This allele and gene specificity indicates that suppression probably results from a specific interaction with Sxl protein, rather than from a bypass of the normal germline requirement for this developmental regulator or from an effect on Sxl expression. The Sxl-Wolbachia interaction provides a rare opportunity to explore host-parasite relationships at the molecular level in a model insect. Furthermore, demonstration that a parasite infection can counteract the deleterious effects of mutations in host genes illustrates how hosts might become dependent on parasites.  相似文献   

15.
Virulent strains of Toxoplasma gondii comprise a single clonal lineage.   总被引:24,自引:0,他引:24  
L D Sibley  J C Boothroyd 《Nature》1992,359(6390):82-85
The protozoan Toxoplasma gondii is a prevalent parasite in wild and domestic animals worldwide, being transmitted through the food chain by carnivorous feeding and scavenging. Toxoplasma normally divides asexually to yield a haploid form that can infect virtually any vertebrate but it also has a well defined sexual cycle that occurs exclusively in cats. Toxoplasma has become important as an often fatal opportunistic pathogen in patients with AIDS, although the 15-85% of adult human populations that are chronically infected with T. gondii are typically asymptomatic. Infections in immunocompromised hosts have variable outcomes. For example, only 30 to 50% of AIDS patients that are chronically infected with the parasite develop toxoplasmic encephalitis and only about half of acute maternal infections result in congenital disease of the newborn. T. gondii strains differ in their virulence in animals, but the extent to which different strains are related has not been determined. Here we analyse 28 strains from a variety of hosts on five continents and find that the ten virulent strains have an essentially identical genotype, whereas the nonvirulent strains are moderately polymorphic. These data strongly suggest that virulent strains of T. gondii originated from a single lineage which has remained genetically homogeneous despite being globally widespread, and despite the ability of this organism to reproduce sexually.  相似文献   

16.
泛素调节的蛋白质降解--2004年诺贝尔化学奖成果简介   总被引:1,自引:0,他引:1  
以色列科学家阿龙·切哈诺沃(Aaron Ciechanover)、阿夫拉姆·赫什科(Avram Hershko)和美国科学家欧文·罗斯(Irwin Rose)因发现泛素调节的蛋白质降解被授予2004年诺贝尔化学奖.泛素是一种含76个氨基酸的多肽,存在于除细菌外的许多不同组织和器官中,具有标记待降解蛋白质的作用.被泛素标记的蛋白质在蛋白酶体中被降解.泛素控制的蛋白质降解具有重要的生理意义,它不仅能够清除错误蛋白质,对细胞生长周期、DNA复制以及染色体结构都有重要的调控作用.  相似文献   

17.
Genealogy can illuminate the evolutionary path of important human pathogens. In some microbes, strict clonal reproduction predominates, as with the worldwide dissemination of Mycobacterium leprae, the cause of leprosy. In other pathogens, sexual reproduction yields clones with novel attributes, for example, enabling the efficient, oral transmission of the parasite Toxoplasma gondii. However, the roles of clonal or sexual propagation in the origins of many other microbial pathogen outbreaks remain unknown, like the recent fungal meningoencephalitis outbreak on Vancouver Island, Canada, caused by Cryptococcus gattii. Here we show that the C. gattii outbreak isolates comprise two distinct genotypes. The majority of isolates are hypervirulent and have an identical genotype that is unique to the Pacific Northwest. A minority of the isolates are significantly less virulent and share an identical genotype with fertile isolates from an Australian recombining population. Genotypic analysis reveals evidence of sexual reproduction, in which the majority genotype is the predicted offspring. However, instead of the classic a-alpha sexual cycle, the majority outbreak clone appears to have descended from two alpha mating-type parents. Analysis of nuclear content revealed a diploid environmental isolate homozygous for the major genotype, an intermediate produced during same-sex mating. These studies demonstrate how cryptic same-sex reproduction can enable expansion of a human pathogen to a new geographical niche and contribute to the ongoing production of infectious spores. This has implications for the emergence of other microbial pathogens and inbreeding in host range expansion in the fungal and other kingdoms.  相似文献   

18.
Secreted transcription factor controls Mycobacterium tuberculosis virulence   总被引:1,自引:0,他引:1  
Raghavan S  Manzanillo P  Chan K  Dovey C  Cox JS 《Nature》2008,454(7205):717-721
  相似文献   

19.
20.
Mukherjee S  Liu X  Arasaki K  McDonough J  Galán JE  Roy CR 《Nature》2011,477(7362):103-106
The intracellular pathogen Legionella pneumophila modulates the activity of host GTPases to direct the transport and assembly of the membrane-bound compartment in which it resides. In vitro studies have indicated that the Legionella protein DrrA post-translationally modifies the GTPase Rab1 by a process called AMPylation. Here we used mass spectrometry to investigate post-translational modifications to Rab1 that occur during infection of host cells by Legionella. Consistent with in vitro studies, DrrA-mediated AMPylation of a conserved tyrosine residue in the switch II region of Rab1 was detected during infection. In addition, a modification to an adjacent serine residue in Rab1 was discovered, which was independent of DrrA. The Legionella effector protein AnkX was required for this modification. Biochemical studies determined that AnkX directly mediates the covalent attachment of a phosphocholine moiety to Rab1. This phosphocholine transferase activity used CDP-choline as a substrate and required a conserved histidine residue located in the FIC domain of the AnkX protein. During infection, AnkX modified both Rab1 and Rab35, which explains how this protein modulates membrane transport through both the endocytic and exocytic pathways of the host cell. Thus, phosphocholination of Rab GTPases represents a mechanism by which bacterial FIC-domain-containing proteins can alter host-cell functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号