首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-modal and cross-temporal association in neurons of frontal cortex   总被引:15,自引:0,他引:15  
Fuster JM  Bodner M  Kroger JK 《Nature》2000,405(6784):347-351
The prefrontal cortex is essential for the temporal integration of sensory information in behavioural and linguistic sequences. Such information is commonly encoded in more than one sense modality, notably sight and sound. Connections from sensory cortices to the prefrontal cortex support its integrative function. Here we present the first evidence that prefrontal cortex cells associate visual and auditory stimuli across time. We gave monkeys the task of remembering a tone of a certain pitch for 10 s and then choosing the colour associated with it. In this task, prefrontal cortex cells responded selectively to tones, and most of them also responded to colours according to the task rule. Thus, their reaction to a tone was correlated with their subsequent reaction to the associated colour. This correlation faltered in trials ending in behavioural error. We conclude that prefrontal cortex neurons are part of integrative networks that represent behaviourally meaningful cross-modal associations. The orderly and timely activation of neurons in such networks is crucial for the temporal transfer of information in the structuring of behaviour, reasoning and language.  相似文献   

2.
Harvey CD  Coen P  Tank DW 《Nature》2012,484(7392):62-68
The posterior parietal cortex (PPC) has an important role in many cognitive behaviours; however, the neural circuit dynamics underlying PPC function are not well understood. Here we optically imaged the spatial and temporal activity patterns of neuronal populations in mice performing a PPC-dependent task that combined a perceptual decision and memory-guided navigation in a virtual environment. Individual neurons had transient activation staggered relative to one another in time, forming a sequence of neuronal activation spanning the entire length of a task trial. Distinct sequences of neurons were triggered on trials with opposite behavioural choices and defined divergent, choice-specific trajectories through a state space of neuronal population activity. Cells participating in the different sequences and at distinct time points in the task were anatomically intermixed over microcircuit length scales (<100 micrometres). During working memory decision tasks, the PPC may therefore perform computations through sequence-based circuit dynamics, rather than long-lived stable states, implemented using anatomically intermingled microcircuits.  相似文献   

3.
Dobbins IG  Schnyer DM  Verfaellie M  Schacter DL 《Nature》2004,428(6980):316-319
Recent observation of objects speeds up their subsequent identification and classification. This common form of learning, known as repetition priming, can operate in the absence of explicit memory for earlier experiences, and functional neuroimaging has shown that object classification improved in this way is accompanied by 'neural priming' (reduced neural activity) in prefrontal, fusiform and other cortical regions. These observations have led to suggestions that cortical representations of items undergo 'tuning', whereby neurons encoding irrelevant information respond less as a given object is observed repeatedly, thereby facilitating future availability of pertinent object knowledge. Here we provide experimental support for an alternative hypothesis, in which reduced cortical activity occurs because subjects rapidly learn their previous responses. After a primed object classification (such as 'bigger than a shoebox'), cue reversal ('smaller than a shoebox') greatly slowed performance and completely eliminated neural priming in fusiform cortex, which suggests that these cortical item representations were no more available for primed objects than they were for new objects. In contrast, prefrontal cortex activity tracked behavioural priming and predicted the degree to which cue reversal would slow down object classification--highlighting the role of the prefrontal cortex in executive control.  相似文献   

4.
Pasupathy A  Miller EK 《Nature》2005,433(7028):873-876
To navigate our complex world, our brains have evolved a sophisticated ability to quickly learn arbitrary rules such as 'stop at red'. Studies in monkeys using a laboratory test of this capacity--conditional association learning--have revealed that frontal lobe structures (including the prefrontal cortex) as well as subcortical nuclei of the basal ganglia are involved in such learning. Neural correlates of associative learning have been observed in both brain regions, but whether or not these regions have unique functions is unclear, as they have typically been studied separately using different tasks. Here we show that during associative learning in monkeys, neural activity in these areas changes at different rates: the striatum (an input structure of the basal ganglia) showed rapid, almost bistable, changes compared with a slower trend in the prefrontal cortex that was more in accordance with slow improvements in behavioural performance. Also, pre-saccadic activity began progressively earlier in the striatum but not in the prefrontal cortex as learning took place. These results support the hypothesis that rewarded associations are first identified by the basal ganglia, the output of which 'trains' slower learning mechanisms in the frontal cortex.  相似文献   

5.
The first neuroimaging study of real-time brain activity during insight problem solving was conducted almost ten years ago. Many subsequent studies have used high-resolution event-related potentials (ERPs) and event-related functional magnetic resonance imaging (fMRI) to investigate the temporal dynamics and neural correlates of insight. Recent results on the neural underpinnings of insight have led researchers to propose a neural framework referred to as the "insightful brain". This putative framework represents the neural basis of the cognitive and affective processes that are involved in insight. The insightful brain may involve numerous brain regions, including the lateral prefrontal cortex, cingulate cortex, hippocampus, superior temporal gyrus, fusiform gyrus, precuneus, cuneus, insula and cerebellum. Functional studies have demonstrated that the lateral prefrontal cortex is responsible for mental set shifting and breaking during insight problem solving. The cingulate cortex is involved in the cognitive conflict between new and old ideas and progress monitoring. The hippocampus, superior temporal gyrus and fusiform gyrus form an integrated functional network that specializes in the formation of novel and effective associations. The effective transformation of problem representations depends on a non-verbal visuospatial information-processing network that comprises the precuneus and cuneus. The insula reflects cognitive flexibility and the emotional experience that is associated with insight. The cortical control of finger movements relies on the cerebellum.  相似文献   

6.
Switching on and off fear by distinct neuronal circuits   总被引:1,自引:0,他引:1  
Herry C  Ciocchi S  Senn V  Demmou L  Müller C  Lüthi A 《Nature》2008,454(7204):600-606
Switching between exploratory and defensive behaviour is fundamental to survival of many animals, but how this transition is achieved by specific neuronal circuits is not known. Here, using the converse behavioural states of fear extinction and its context-dependent renewal as a model in mice, we show that bi-directional transitions between states of high and low fear are triggered by a rapid switch in the balance of activity between two distinct populations of basal amygdala neurons. These two populations are integrated into discrete neuronal circuits differentially connected with the hippocampus and the medial prefrontal cortex. Targeted and reversible neuronal inactivation of the basal amygdala prevents behavioural changes without affecting memory or expression of behaviour. Our findings indicate that switching between distinct behavioural states can be triggered by selective activation of specific neuronal circuits integrating sensory and contextual information. These observations provide a new framework for understanding context-dependent changes of fear behaviour.  相似文献   

7.
Chemical codes for the control of behaviour in arthropods   总被引:4,自引:0,他引:4  
G Bicker  R Menzel 《Nature》1989,337(6202):33-39
Neuromodulators and hormones elicit and modify well-defined behaviours. Their mode of action can be studied to advantage in arthropods, where the natural releasing cells and neuronal target circuits are concisely identified. The coordinated actions of biogenic amines and peptides on both central and peripheral neural activity and metabolic processes bias the whole organism to perform a coherent behavioural routine.  相似文献   

8.
Daw ND  O'Doherty JP  Dayan P  Seymour B  Dolan RJ 《Nature》2006,441(7095):876-879
Decision making in an uncertain environment poses a conflict between the opposing demands of gathering and exploiting information. In a classic illustration of this 'exploration-exploitation' dilemma, a gambler choosing between multiple slot machines balances the desire to select what seems, on the basis of accumulated experience, the richest option, against the desire to choose a less familiar option that might turn out more advantageous (and thereby provide information for improving future decisions). Far from representing idle curiosity, such exploration is often critical for organisms to discover how best to harvest resources such as food and water. In appetitive choice, substantial experimental evidence, underpinned by computational reinforcement learning (RL) theory, indicates that a dopaminergic, striatal and medial prefrontal network mediates learning to exploit. In contrast, although exploration has been well studied from both theoretical and ethological perspectives, its neural substrates are much less clear. Here we show, in a gambling task, that human subjects' choices can be characterized by a computationally well-regarded strategy for addressing the explore/exploit dilemma. Furthermore, using this characterization to classify decisions as exploratory or exploitative, we employ functional magnetic resonance imaging to show that the frontopolar cortex and intraparietal sulcus are preferentially active during exploratory decisions. In contrast, regions of striatum and ventromedial prefrontal cortex exhibit activity characteristic of an involvement in value-based exploitative decision making. The results suggest a model of action selection under uncertainty that involves switching between exploratory and exploitative behavioural modes, and provide a computationally precise characterization of the contribution of key decision-related brain systems to each of these functions.  相似文献   

9.
10.
Sosulski DL  Bloom ML  Cutforth T  Axel R  Datta SR 《Nature》2011,472(7342):213-216
Sensory information is transmitted to the brain where it must be processed to translate stimulus features into appropriate behavioural output. In the olfactory system, distributed neural activity in the nose is converted into a segregated map in the olfactory bulb. Here we investigate how this ordered representation is transformed in higher olfactory centres in mice. We have developed a tracing strategy to define the neural circuits that convey information from individual glomeruli in the olfactory bulb to the piriform cortex and the cortical amygdala. The spatial order in the bulb is discarded in the piriform cortex; axons from individual glomeruli project diffusely to the piriform without apparent spatial preference. In the cortical amygdala, we observe broad patches of projections that are spatially stereotyped for individual glomeruli. These projections to the amygdala are overlapping and afford the opportunity for spatially localized integration of information from multiple glomeruli. The identification of a distributive pattern of projections to the piriform and stereotyped projections to the amygdala provides an anatomical context for the generation of learned and innate behaviours.  相似文献   

11.
A neural correlate of response bias in monkey caudate nucleus   总被引:10,自引:0,他引:10  
Lauwereyns J  Watanabe K  Coe B  Hikosaka O 《Nature》2002,418(6896):413-417
Primates are equipped with neural circuits in the prefrontal cortex, the parietal cortex and the basal ganglia that predict the availability of reward during the performance of behavioural tasks. It is not known, however, how reward value is incorporated in the control of action. Here we identify neurons in the monkey caudate nucleus that create a spatially selective response bias depending on the expected gain. In behavioural tasks, the monkey had to make a visually guided eye movement in every trial, but was rewarded for a correct response in only half of the trials. Reward availability was predictable on the basis of the spatial position of the visual target. We found that caudate neurons change their discharge rate systematically, even before the appearance of the visual target, and usually fire more when the contralateral position is associated with reward. Strong anticipatory activity of neurons with a contralateral preference is associated with decreased latency for eye movements in the contralateral direction. We conclude that this neuronal mechanism creates an advance bias that favours a spatial response when it is associated with a high reward value.  相似文献   

12.
The basolateral amygdala (BLA) has a crucial role in emotional learning irrespective of valence. The BLA projection to the nucleus accumbens (NAc) is thought to modulate cue-triggered motivated behaviours, but our understanding of the interaction between these two brain regions has been limited by the inability to manipulate neural-circuit elements of this pathway selectively during behaviour. To circumvent this limitation, we used in vivo optogenetic stimulation or inhibition of glutamatergic fibres from the BLA to the NAc, coupled with intracranial pharmacology and ex vivo electrophysiology. Here we show that optical stimulation of the pathway from the BLA to the NAc in mice reinforces behavioural responding to earn additional optical stimulation of these synaptic inputs. Optical stimulation of these glutamatergic fibres required intra-NAc dopamine D1-type receptor signalling, but not D2-type receptor signalling. Brief optical inhibition of fibres from the BLA to the NAc reduced cue-evoked intake of sucrose, demonstrating an important role of this specific pathway in controlling naturally occurring reward-related behaviour. Moreover, although optical stimulation of glutamatergic fibres from the medial prefrontal cortex to the NAc also elicited reliable excitatory synaptic responses, optical self-stimulation behaviour was not observed by activation of this pathway. These data indicate that whereas the BLA is important for processing both positive and negative affect, the glutamatergic pathway from the BLA to the NAc, in conjunction with dopamine signalling in the NAc, promotes motivated behavioural responding. Thus, optogenetic manipulation of anatomically distinct synaptic inputs to the NAc reveals functionally distinct properties of these inputs in controlling reward-seeking behaviours.  相似文献   

13.
Severe behavioural deficits in psychiatric diseases such as autism and schizophrenia have been hypothesized to arise from elevations in the cellular balance of excitation and inhibition (E/I balance) within neural microcircuitry. This hypothesis could unify diverse streams of pathophysiological and genetic evidence, but has not been susceptible to direct testing. Here we design and use several novel optogenetic tools to causally investigate the cellular E/I balance hypothesis in freely moving mammals, and explore the associated circuit physiology. Elevation, but not reduction, of cellular E/I balance within the mouse medial prefrontal cortex was found to elicit a profound impairment in cellular information processing, associated with specific behavioural impairments and increased high-frequency power in the 30-80?Hz range, which have both been observed in clinical conditions in humans. Consistent with the E/I balance hypothesis, compensatory elevation of inhibitory cell excitability partially rescued social deficits caused by E/I balance elevation. These results provide support for the elevated cellular E/I balance hypothesis of severe neuropsychiatric disease-related symptoms.  相似文献   

14.
Barnes TD  Kubota Y  Hu D  Jin DZ  Graybiel AM 《Nature》2005,437(7062):1158-1161
Learning to perform a behavioural procedure as a well-ingrained habit requires extensive repetition of the behavioural sequence, and learning not to perform such behaviours is notoriously difficult. Yet regaining a habit can occur quickly, with even one or a few exposures to cues previously triggering the behaviour. To identify neural mechanisms that might underlie such learning dynamics, we made long-term recordings from multiple neurons in the sensorimotor striatum, a basal ganglia structure implicated in habit formation, in rats successively trained on a reward-based procedural task, given extinction training and then given reacquisition training. The spike activity of striatal output neurons, nodal points in cortico-basal ganglia circuits, changed markedly across multiple dimensions during each of these phases of learning. First, new patterns of task-related ensemble firing successively formed, reversed and then re-emerged. Second, task-irrelevant firing was suppressed, then rebounded, and then was suppressed again. These changing spike activity patterns were highly correlated with changes in behavioural performance. We propose that these changes in task representation in cortico-basal ganglia circuits represent neural equivalents of the explore-exploit behaviour characteristic of habit learning.  相似文献   

15.
Koralek AC  Jin X  Long JD  Costa RM  Carmena JM 《Nature》2012,483(7389):331-335
The ability to learn new skills and perfect them with practice applies not only to physical skills but also to abstract skills, like motor planning or neuroprosthetic actions. Although plasticity in corticostriatal circuits has been implicated in learning physical skills, it remains unclear if similar circuits or processes are required for abstract skill learning. Here we use a novel behavioural task in rodents to investigate the role of corticostriatal plasticity in abstract skill learning. Rodents learned to control the pitch of an auditory cursor to reach one of two targets by modulating activity in primary motor cortex irrespective of physical movement. Degradation of the relation between action and outcome, as well as sensory-specific devaluation and omission tests, demonstrate that these learned neuroprosthetic actions are intentional and goal-directed, rather than habitual. Striatal neurons change their activity with learning, with more neurons modulating their activity in relation to target-reaching as learning progresses. Concomitantly, strong relations between the activity of neurons in motor cortex and the striatum emerge. Specific deletion of striatal NMDA receptors impairs the development of this corticostriatal plasticity, and disrupts the ability to learn neuroprosthetic skills. These results suggest that corticostriatal plasticity is necessary for abstract skill learning, and that neuroprosthetic movements capitalize on the neural circuitry involved in natural motor learning.  相似文献   

16.
Noudoost B  Moore T 《Nature》2011,474(7351):372-375
The prefrontal cortex is thought to modulate sensory signals in posterior cortices during top-down attention, but little is known about the underlying neural circuitry. Experimental and clinical evidence indicate that prefrontal dopamine has an important role in cognitive functions, acting predominantly through D1 receptors. Here we show that dopamine D1 receptors mediate prefrontal control of signals in the visual cortex of macaques (Macaca mulatta). We pharmacologically altered D1-receptor-mediated activity in the frontal eye field of the prefrontal cortex and measured the effect on the responses of neurons in area V4 of the visual cortex. This manipulation was sufficient to enhance the magnitude, the orientation selectivity and the reliability of V4 visual responses to an extent comparable with the known effects of top-down attention. The enhancement of V4 signals was restricted to neurons with response fields overlapping the part of visual space affected by the D1 receptor manipulation. Altering either D1- or D2-receptor-mediated frontal eye field activity increased saccadic target selection but the D2 receptor manipulation did not enhance V4 signals. Our results identify a role for D1 receptors in mediating the control of visual cortical signals by the prefrontal cortex and suggest how processing in sensory areas could be altered in mental disorders involving prefrontal dopamine.  相似文献   

17.
抑郁症患者通常表现出心境低落,并且伴随许多认知和生理症状. 文中使用功能性近红外光谱成像技术(fNIRS)来测量28名抑郁症患者和30名对照组8 min前额皮层的自发血液动力活动. 通过图论和拓扑分析对大脑前额皮层静息态网络属性进行分析,结果表明,抑郁症患者前额皮层网络表现出异常的模式:显著降低的网络密度(低的平均节点等级)、显著降低的聚集程度(低的聚类系数)、显著降低的网络信息传输效率(高的平均路径长度)以及显著增加的随机性(低的小世界属性). 这些结果表明使用近红外光谱技术能够揭示抑郁症患者脑网络的异常特性.  相似文献   

18.
Some studies have shown that native Chinese speakers have different laterality in matched Stroop tasks from native English speakers. Recently, many imaging data, which show left laterality of English-matched Stroop interference, have been reported. And a few functional imaging studies have been conducted to investigate the phenomenon of the Chinese version of Stroop task. In this study, functional activity in the lateral prefrontal cortex of a group of normal Chinese boys with functional near-infrared imaging during a Stroop color-word task was measured to show different Stroop interferences in the prefrontal cortex. The results show obvious fluctuation of the cerebral blood volume in the right prefrontal cortex in all boys, which agrees with the finding of previous studies, that is, Chinese native boys have right laterality in their brain when the Chinese version of Stroop color-word task is applied.  相似文献   

19.
Some studies have shown that native Chinese speakers have different laterality in matched Stroop tasks from native English speakers.Recently,many imaging data,which show left laterality of English-matched Stroop interference,have been reported.And a few functional imaging studies have been conducted to investigate the phenomenon of the Chinese version of Stroop task.In this study,functional activity in the lateral prefrontal cortex of a group of normal Chinese boys with functional near-infrared imaging during a Stroop color-word task was measured to show different Stroop interferences in the prefrontal cortex.The results show obvious fluctuation of the cerebral blood volume in the right prefrontal cortex in all boys,which agrees with the finding of previous studies,that is,Chinese native boys have right laterality in their brain when the Chinese version of Stroop color-word task is applied.  相似文献   

20.
Dynamic coding of behaviourally relevant stimuli in parietal cortex.   总被引:12,自引:0,他引:12  
Louis J Toth  John A Assad 《Nature》2002,415(6868):165-168
A general function of cerebral cortex is to allow the flexible association of sensory stimuli with specific behaviours. Many neurons in parietal, prefrontal and motor cortical areas are activated both by particular movements and by sensory cues that trigger these movements, suggesting a role in linking sensation to action. For example, neurons in the lateral intraparietal area (LIP) encode both the location of visual stimuli and the direction of saccadic eye movements. LIP is not believed to encode non-spatial stimulus attributes such as colour. Here we investigated whether LIP would encode colour if colour was behaviourally linked to the eye movement. We trained monkeys to make an eye movement in one of two directions based alternately on the colour or location of a visual cue. When cue colour was relevant for directing eye movement, we found a substantial fraction of LIP neurons selective for cue colour. However, when cue location was relevant, colour selectivity was virtually absent in LIP. These results demonstrate that selectivity of cortical neurons can change as a function of the required behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号