首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Burga A  Casanueva MO  Lehner B 《Nature》2011,480(7376):250-253
Many mutations, including those that cause disease, only have a detrimental effect in a subset of individuals. The reasons for this are usually unknown, but may include additional genetic variation and environmental risk factors. However, phenotypic discordance remains even in the absence of genetic variation, for example between monozygotic twins, and incomplete penetrance of mutations is frequent in isogenic model organisms in homogeneous environments. Here we propose a model for incomplete penetrance based on genetic interaction networks. Using Caenorhabditis elegans as a model system, we identify two compensation mechanisms that vary among individuals and influence mutation outcome. First, feedback induction of an ancestral gene duplicate differs across individuals, with high expression masking the effects of a mutation. This supports the hypothesis that redundancy is maintained in genomes to buffer stochastic developmental failure. Second, during normal embryonic development we find that there is substantial variation in the induction of molecular chaperones such as Hsp90 (DAF-21). Chaperones act as promiscuous buffers of genetic variation, and embryos with stronger induction of Hsp90 are less likely to be affected by an inherited mutation. Simultaneously quantifying the variation in these two independent responses allows the phenotypic outcome of a mutation to be more accurately predicted in individuals. Our model and methodology provide a framework for dissecting the causes of incomplete penetrance. Further, the results establish that inter-individual variation in both specific and more general buffering systems combine to determine the outcome inherited mutations in each individual.  相似文献   

2.
Bergman A  Siegal ML 《Nature》2003,424(6948):549-552
An evolutionary capacitor buffers genotypic variation under normal conditions, thereby promoting the accumulation of hidden polymorphism. But it occasionally fails, thereby revealing this variation phenotypically. The principal example of an evolutionary capacitor is Hsp90, a molecular chaperone that targets an important set of signal transduction proteins. Experiments in Drosophila and Arabidopsis have demonstrated three key properties of Hsp90: (1) it suppresses phenotypic variation under normal conditions and releases this variation when functionally compromised; (2) its function is overwhelmed by environmental stress; and (3) it exerts pleiotropic effects on key developmental processes. But whether these properties necessarily make Hsp90 a significant and unique facilitator of adaptation is unclear. Here we use numerical simulations of complex gene networks, as well as genome-scale expression data from yeast single-gene deletion strains, to present a mechanism that extends the scope of evolutionary capacitance beyond the action of Hsp90 alone. We illustrate that most, and perhaps all, genes reveal phenotypic variation when functionally compromised, and that the availability of loss-of-function mutations accelerates adaptation to a new optimum phenotype. However, this effect does not require the mutations to be conditional on the environment. Thus, there might exist a large class of evolutionary capacitors whose effects on phenotypic variation complement the systemic, environment-induced effects of Hsp90.  相似文献   

3.
Boss PK  Thomas MR 《Nature》2002,416(6883):847-850
The transition from vegetative to reproductive growth is an essential process in the life cycle of plants. Plant floral induction pathways respond to both environmental and endogenous cues and much has been learnt about these genetic pathways by studying mutants of Arabidopsis. Gibberellins (GAs) are plant growth regulators important in many aspects of plant growth and in Arabidopsis they promote flowering. Here we provide genetic evidence that GAs inhibit flowering in grapevine. A grapevine dwarf mutant derived from the L1 cell layer of the champagne cultivar Pinot Meunier produces inflorescences along the length of the shoot where tendrils are normally formed. The mutated gene associated with the phenotype is a homologue of the wheat 'green revolution' gene Reduced height-1 (ref. 6) and the Arabidopsis gene GA insensitive (GAI). The conversion of tendrils to inflorescences in the mutant demonstrates that the grapevine tendril is a modified inflorescence inhibited from completing floral development by GAs.  相似文献   

4.
The ERECTA gene regulates plant transpiration efficiency in Arabidopsis   总被引:5,自引:0,他引:5  
Masle J  Gilmore SR  Farquhar GD 《Nature》2005,436(7052):866-870
Assimilation of carbon by plants incurs water costs. In the many parts of the world where water is in short supply, plant transpiration efficiency, the ratio of carbon fixation to water loss, is critical to plant survival, crop yield and vegetation dynamics. When challenged by variations in their environment, plants often seem to coordinate photosynthesis and transpiration, but significant genetic variation in transpiration efficiency has been identified both between and within species. This has allowed plant breeders to develop effective selection programmes for the improved transpiration efficiency of crops, after it was demonstrated that carbon isotopic discrimination, Delta, of plant matter was a reliable and sensitive marker negatively related to variation in transpiration efficiency. However, little is known of the genetic controls of transpiration efficiency. Here we report the isolation of a gene that regulates transpiration efficiency, ERECTA. We show that ERECTA, a putative leucine-rich repeat receptor-like kinase (LRR-RLK) known for its effects on inflorescence development, is a major contributor to a locus for Delta on Arabidopsis chromosome 2. Mechanisms include, but are not limited to, effects on stomatal density, epidermal cell expansion, mesophyll cell proliferation and cell-cell contact.  相似文献   

5.
Arabidopsis thaliana, a model plant species, has a number of advantages over other plant species as an experimental organism due to many of its genetic and genomic features. The Chinese Arabidopsis community has made significant contributions to plant biology research in recent years[1,2]. In 2006, studies of plant biology in China received more attention than ever before, especially those pertaining to Arabidopsis research. Here we briefly summarize recent advances in Arabidopsis re-search in China.  相似文献   

6.
植物的新陈代谢和生长发育主要受遗传信息和环境信息的调节控制,获得对复杂环境的适应性,调节生长发育进程,成为植物维持生存的主要手段.细胞对机械刺激的响应包括信号感受、信号转导和最终引起细胞生物化学反应的过程.综述了近年来在植物对机械刺激信号的感受和转导途径的研究领域中一些重要结果,其中包括整合素及其类似物介导的机械-化学信号转化,质膜流动性对机械刺激的响应,机械信号的转导途径——钙信号系统等,并对该领域的研究重点和方向进行了展望.  相似文献   

7.
The plant root defines the interface between a multicellular eukaryote and soil, one of the richest microbial ecosystems on Earth. Notably, soil bacteria are able to multiply inside roots as benign endophytes and modulate plant growth and development, with implications ranging from enhanced crop productivity to phytoremediation. Endophytic colonization represents an apparent paradox of plant innate immunity because plant cells can detect an array of microbe-associated molecular patterns (also known as MAMPs) to initiate immune responses to terminate microbial multiplication. Several studies attempted to describe the structure of bacterial root endophytes; however, different sampling protocols and low-resolution profiling methods make it difficult to infer general principles. Here we describe methodology to characterize and compare soil- and root-inhabiting bacterial communities, which reveals not only a function for metabolically active plant cells but also for inert cell-wall features in the selection of soil bacteria for host colonization. We show that the roots of Arabidopsis thaliana, grown in different natural soils under controlled environmental conditions, are preferentially colonized by Proteobacteria, Bacteroidetes and Actinobacteria, and each bacterial phylum is represented by a dominating class or family. Soil type defines the composition of root-inhabiting bacterial communities and host genotype determines their ribotype profiles to a limited extent. The identification of soil-type-specific members within the root-inhabiting assemblies supports our conclusion that these represent soil-derived root endophytes. Surprisingly, plant cell-wall features of other tested plant species seem to provide a sufficient cue for the assembly of approximately 40% of the Arabidopsis bacterial root-inhabiting microbiota, with a bias for Betaproteobacteria. Thus, this root sub-community may not be Arabidopsis-specific but saprophytic bacteria that would naturally be found on any plant root or plant debris in the tested soils. By contrast, colonization of Arabidopsis roots by members of the Actinobacteria depends on other cues from metabolically active host cells.  相似文献   

8.
【目的】了解不同更新方式巨尾桉(Eucalytus grandis×E.urophylla)人工林下植物群落的变化规律。【方法】采用典范对应分析(CCA),定量评价巨尾桉人工林下植物分布与更新方式和环境因子之间的关系。【结果】更新后5年,群落草本层和灌木层的物种丰富度均为植苗林〉萌芽林〉采伐迹地;草本层植物的ShannonWiener指数、Simpson指数和Pielou均匀度指数以植苗林为最高,采伐迹地次之,萌芽林最小;灌木层的Shannon-Wiener指数、Simpson指数和Pielou均匀度指数则以萌芽林为最高,植苗林次之,采伐迹地最小;方差分析结果表明,萌芽林与植苗林草本层植物之间的Shannon-Wiener指数、Simpson指数和Pielou均匀度指数存在显著差异(P〈0.05),采伐迹地的Shannon-Wiener指数和Pielou均匀度指数明显低于萌芽林(P〈0.05),其余均无显著差异。3种群落的物种组成存在显著差异,冠层透光系数、土壤孔隙度、坡向、速效磷对灌木层物种分布格局有重要的影响,4个环境因子的叠加效应总共解释了3种群落之间灌木层物种组成变异的90%以上;冠层透光系数、坡向、总氮/总磷、速效氮/速效磷、土壤孔隙度对草本层物种分布格局有重要影响,5个环境因子的叠加效应总共解释了3种群落之间草本层物种组成变异的86%。【结论】微生境的变化导致了不同更新方式巨尾桉人工林下植物组成的变化;适度干扰(不炼山、不施除草剂、带状整地、带状抚育)有利于林下植物多样性的维持。  相似文献   

9.
Hayama R  Yokoi S  Tamaki S  Yano M  Shimamoto K 《Nature》2003,422(6933):719-722
The photoperiodic control of flowering is one of the important developmental processes of plants because it is directly related to successful reproduction. Although the molecular genetic analysis of Arabidopsis thaliana, a long-day (LD) plant, has provided models to explain the control of flowering time in this species, very little is known about its molecular mechanisms for short-day (SD) plants. Here we show how the photoperiodic control of flowering is regulated in rice, a SD plant. Overexpression of OsGI, an orthologue of the Arabidopsis GIGANTEA (GI) gene in transgenic rice, caused late flowering under both SD and LD conditions. Expression of the rice orthologue of the Arabidopsis CONSTANS (CO) gene was increased in the transgenic rice, whereas expression of the rice orthologue of FLOWERING LOCUS T (FT) was suppressed. Our results indicate that three key regulatory genes for the photoperiodic control of flowering are conserved between Arabidopsis, a LD plant, and rice, a SD plant, but regulation of the FT gene by CO was reversed, resulting in the suppression of flowering in rice under LD conditions.  相似文献   

10.
Kroymann J  Mitchell-Olds T 《Nature》2005,435(7038):95-98
Complex traits such as human disease, growth rate, or crop yield are polygenic, or determined by the contributions from numerous genes in a quantitative manner. Although progress has been made in identifying major quantitative trait loci (QTL), experimental constraints have limited our knowledge of small-effect QTL, which may be responsible for a large proportion of trait variation. Here, we identified and dissected a one-centimorgan chromosome interval in Arabidopsis thaliana without regard to its effect on growth rate, and examined the signature of historical sequence polymorphism among Arabidopsis accessions. We found that the interval contained two growth rate QTL within 210 kilobases. Both QTL showed epistasis; that is, their phenotypic effects depended on the genetic background. This amount of complexity in such a small area suggests a highly polygenic architecture of quantitative variation, much more than previously documented. One QTL was limited to a single gene. The gene in question displayed a nucleotide signature indicative of balancing selection, and its phenotypic effects are reversed depending on genetic background. If this region typifies many complex trait loci, then non-neutral epistatic polymorphism may be an important contributor to genetic variation in complex traits.  相似文献   

11.
Mitchell-Olds T  Schmitt J 《Nature》2006,441(7096):947-952
Genomic studies of natural variation in model organisms provide a bridge between molecular analyses of gene function and evolutionary investigations of adaptation and natural selection. In the model plant species Arabidopsis thaliana, recent studies of natural variation have led to the identification of genes underlying ecologically important complex traits, and provided new insights about the processes of genome evolution, geographic population structure, and the selective mechanisms shaping complex trait variation in natural populations. These advances illustrate the potential for a new synthesis to elucidate mechanisms for the adaptive evolution of complex traits from nucleotide sequences to real-world environments.  相似文献   

12.
Ethylene regulates many aspects of growth, development and responses to environmental stresses in plants. Its signaling pathway has been established in model dicotyledonous plant Arabidopsis. However, its roles and signal transduction in monocotyledous rice plant remain largely unknown. In this review, we summarize the current advances in rice ethylene signaling studies and compare these with the results from Arabidopsis and other plants. Most of the components homologous to those in Arabidopsis ethylene signaling pathway have been found in rice, including five ethylene receptors, OsEIN2, OsEIL1, and OsERFs. Rice ethylene receptors are functionally more divergent than that of Arabidopsis. OsEIN2 and OsEIL1 display limited roles in regulation of rice ethylene responses compared with their Arabidopsis orthologs. ERF-like proteins OsERF1 and OsEBP-89 appear to be involved in rice ethylene signaling. However, whether they are activated through OsEIN2 and OsEIL1-mediated pathway needs further studies. Given that rice uses ethylene to control many processes that do not exist in Arabidopsis, it seems that new components or new mechanisms may exist in rice ethylene signaling pathway.  相似文献   

13.
Adaptive variation in environmental and genetic sex determination in a fish   总被引:7,自引:0,他引:7  
D O Conover  S W Heins 《Nature》1987,326(6112):496-498
Two general mechanisms of sex determination have been identified among gonochoristic vertebrates: environmental sex determination where offspring become male or female in response to an environmental factor(s) during development (for example, some fishes and reptiles); and genetic sex determination where sex is determined by genotype at conception (as in birds and mammals). How do these sex-determining systems evolve? Direct evidence is virtually non-existent because the sex-determining systems of most species appear to have little genetic variation. Here we provide the first evidence of adaptive variation in environmental and genetic sex determination within a species. We show that in a fish with temperature-dependent sex determination, populations at different latitudes compensate for differences in thermal environment and seasonality by adjusting the response of sex ratio to temperature, and by altering the level of environmental as opposed to genetic control. The adjustments observed are precisely those predicted by adaptive sex ratio theory.  相似文献   

14.
Innate behaviours are flexible: they change rapidly in response to transient environmental conditions, and are modified slowly by changes in the genome. A classical flexible behaviour is the exploration-exploitation decision, which describes the time at which foraging animals choose to abandon a depleting food supply. We have used quantitative genetic analysis to examine the decision to leave a food patch in Caenorhabditis elegans. Here we show that patch-leaving is a multigenic trait regulated in part by naturally occurring non-coding polymorphisms in tyra-3 (tyramine receptor 3), which encodes a G-protein-coupled catecholamine receptor related to vertebrate adrenergic receptors. tyra-3 acts in sensory neurons that detect environmental cues, suggesting that the internal catecholamines detected by tyra-3 regulate responses to external conditions. These results indicate that genetic variation and environmental cues converge on common circuits to regulate behaviour, and suggest that catecholamines have an ancient role in regulating behavioural decisions.  相似文献   

15.
Soltis PS  Soltis DE  Chase MW 《Nature》1999,402(6760):402-404
Comparative biology requires a firm phylogenetic foundation to uncover and understand patterns of diversification and evaluate hypotheses of the processes responsible for these patterns. In the angiosperms, studies of diversification in floral form, stamen organization, reproductive biology, photosynthetic pathway, nitrogen-fixing symbioses and life histories have relied on either explicit or implied phylogenetic trees. Furthermore, to understand the evolution of specific genes and gene families, evaluate the extent of conservation of plant genomes and make proper sense of the huge volume of molecular genetic data available for model organisms such as Arabidopsis, Antirrhinum, maize, rice and wheat, a phylogenetic perspective is necessary. Here we report the results of parsimony analyses of DNA sequences of the plastid genes rbcL and atpB and the nuclear 18S rDNA for 560 species of angiosperms and seven non-flowering seed plants and show a well-resolved and well-supported phylogenetic tree for the angiosperms for use in comparative biology.  相似文献   

16.
Hsp90 chaperones protein folding in vitro.   总被引:31,自引:0,他引:31  
H Wiech  J Buchner  R Zimmermann  U Jakob 《Nature》1992,358(6382):169-170
The heat-shock protein Hsp90 is the most abundant constitutively expressed stress protein in the cytosol of eukaryotic cells, where it participates in the maturation of other proteins, modulation of protein activity in the case of hormone-free steroid receptors, and intracellular transport of some newly synthesized kinases. A feature of all these processes could be their dependence on the formation of protein structure. If Hsp90 is a molecular chaperone involved in maintaining a certain subset of cellular proteins in an inactive form, it should also be able to recognize and bind non-native proteins, thereby influencing their folding to the native state. Here we investigate whether Hsp90 can influence protein folding in vitro and show that Hsp90 suppresses the formation of protein aggregates by binding to the target proteins at a stoichiometry of one Hsp90 dimer to one or two substrate molecule(s). Furthermore, the yield of correctly folded and functional protein is increased significantly. The action of Hsp90 does not depend on the presence of nucleoside triphosphates, so it may be that Hsp90 uses a novel molecular mechanism to assist protein folding in vivo.  相似文献   

17.
Evidence is mounting that extinctions are altering key processes important to the productivity and sustainability of Earth's ecosystems. Further species loss will accelerate change in ecosystem processes, but it is unclear how these effects compare to the direct effects of other forms of environmental change that are both driving diversity loss and altering ecosystem function. Here we use a suite of meta-analyses of published data to show that the effects of species loss on productivity and decomposition--two processes important in all ecosystems--are of comparable magnitude to the effects of many other global environmental changes. In experiments, intermediate levels of species loss (21-40%) reduced plant production by 5-10%, comparable to previously documented effects of ultraviolet radiation and climate warming. Higher levels of extinction (41-60%) had effects rivalling those of ozone, acidification, elevated CO(2) and nutrient pollution. At intermediate levels, species loss generally had equal or greater effects on decomposition than did elevated CO(2) and nitrogen addition. The identity of species lost also had a large effect on changes in productivity and decomposition, generating a wide range of plausible outcomes for extinction. Despite the need for more studies on interactive effects of diversity loss and environmental changes, our analyses clearly show that the ecosystem consequences of local species loss are as quantitatively significant as the direct effects of several global change stressors that have mobilized major international concern and remediation efforts.  相似文献   

18.
Auxin is a key plant morphogenetic signal but tools to analyse dynamically its distribution and signalling during development are still limited. Auxin perception directly triggers the degradation of Aux/IAA repressor proteins. Here we describe a novel Aux/IAA-based auxin signalling sensor termed DII-VENUS that was engineered in the model plant Arabidopsis thaliana. The VENUS fast maturing form of yellow fluorescent protein was fused in-frame to the Aux/IAA auxin-interaction domain (termed domain II; DII) and expressed under a constitutive promoter. We initially show that DII-VENUS abundance is dependent on auxin, its TIR1/AFBs co-receptors and proteasome activities. Next, we demonstrate that DII-VENUS provides a map of relative auxin distribution at cellular resolution in different tissues. DII-VENUS is also rapidly degraded in response to auxin and we used it to visualize dynamic changes in cellular auxin distribution successfully during two developmental responses, the root gravitropic response and lateral organ production at the shoot apex. Our results illustrate the value of developing response input sensors such as DII-VENUS to provide high-resolution spatio-temporal information about hormone distribution and response during plant growth and development.  相似文献   

19.
Melbourne BA  Hastings A 《Nature》2008,454(7200):100-103
Extinction risk in natural populations depends on stochastic factors that affect individuals, and is estimated by incorporating such factors into stochastic models. Stochasticity can be divided into four categories, which include the probabilistic nature of birth and death at the level of individuals (demographic stochasticity), variation in population-level birth and death rates among times or locations (environmental stochasticity), the sex of individuals and variation in vital rates among individuals within a population (demographic heterogeneity). Mechanistic stochastic models that include all of these factors have not previously been developed to examine their combined effects on extinction risk. Here we derive a family of stochastic Ricker models using different combinations of all these stochastic factors, and show that extinction risk depends strongly on the combination of factors that contribute to stochasticity. Furthermore, we show that only with the full stochastic model can the relative importance of environmental and demographic variability, and therefore extinction risk, be correctly determined. Using the full model, we find that demographic sources of stochasticity are the prominent cause of variability in a laboratory population of Tribolium castaneum (red flour beetle), whereas using only the standard simpler models would lead to the erroneous conclusion that environmental variability dominates. Our results demonstrate that current estimates of extinction risk for natural populations could be greatly underestimated because variability has been mistakenly attributed to the environment rather than the demographic factors described here that entail much higher extinction risk for the same variability level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号