首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 182 毫秒
1.
实验分析了在15%、50%和90%RH湿度条件下CH3NH3PbI3薄膜退化过程.通过XRD测量发现不同湿度环境中CH3NH3PbI3薄膜的退化产物为PbI2,且在90%相对湿度(RH)环境下还观测到了退化中间产物水合物(CH3NH3)4PbI6·2H2O.不同湿度环境中CH3NH3PbI3薄膜退化速度不同,湿度越大,退化速度越快.通过载流子动力学的测量发现随着退化时间增长,CH3NH3PbI3薄膜光生载流子数量不断减小.低湿度环境下CH3NH3PbI3薄膜在退化过程中表现出缺陷钝化现象,载流子复合寿命随退化时间呈先上升后下降趋势.而在高湿度条件下,CH3NH3PbI3薄膜出现缺陷增加现象,载流子复合寿命随退化时间呈下降趋势.  相似文献   

2.
CH3NH3PbI3(MAPbI3)钙钛矿电池的能量转换效率与钙钛矿薄膜质量密切相关。为了获得高质量的钙钛矿薄膜,通过优化薄膜制备方法和工艺流程,发现绿色反溶剂乙酸丙酯和丙二醇甲醚能促进PbI2粒子的成核,提供CH3NH3PbI3钙钛矿晶体的异相成核位点,从而促进钙钛矿晶体的快速生长。研究表明,与常用的有毒溶剂氯苯处理的钙钛矿薄膜相比,通过乙酸丙酯和丙二醇甲醚处理的薄膜晶粒较大,均方根值较低,表面粗糙度获得较大优化,可以获得晶粒尺寸均匀、接近钙钛矿载流子扩散长度的全覆盖钙钛矿薄膜。测试不同处理条件下的器件性能发现,与氯苯处理的CH3NH3PbI3钙钛矿太阳能电池(能量转换效率为17.86%)相比,绿色反溶剂丙二醇甲醚处理的器件的最佳效率为21.60%,提高近21%,该实验结果对今后获得环境友好的高质量钙钛矿型太阳能电池具有一定的参考价值和指导意义。  相似文献   

3.
本文通过使用异丁基碘化铵 (IBA)对Cs0.1(CH3NH3)0.9PbI3 薄膜进行表面钝化来提高Cs0.1(CH3NH3)0.9PbI3太阳能电池器件的效率。首先采用 FTO/SnO2/Cs0.1(CH3NH3)0.9PbI3(FTO,即氟掺杂氧化锡)和 IBA/Spiro-OMeTAD/Ag制备了n–i–p 结构的钙钛矿太阳能电池器件。然后,系统地研究了不同重量的 IBA 钝化对 Cs 掺杂钙钛矿太阳能电池 (PSC) 的影响,并与未钝化的器件进行了比较。研究发现,使用 5-mg IBA 钝化器件的功率转换效率 (PCE)为15.49%,高于非 IBA 钝化器件的12.64% 。同时,与 Cs 掺杂器件相比, 5-mg IBA 钝化器件的光伏参数明显得到改善。此外,晶体结构中PbI2相的减少、较低的电荷复合率、较低的电荷转移电阻和改善的钙钛矿薄膜接触角等结果进一步证实了IBA钝化器件具备更好性能。因此,对Cs0.1(CH3NH3)0.9PbI3进行 IBA 钝化是提高 Cs 掺杂钙钛矿太阳能电池效率的有前景的技术。  相似文献   

4.
过硫酸盐活化技术作为一种新型高级氧化技术,与光电催化技术耦合后能够显著提高材料对污染物的降解性能. 通过水热法研制ZIF-67/8的衍生材料ZnO@N, C-Co3O4,显著拓宽ZnO的光吸收范围至可见光区域,并且有效抑制光生载流子的复合. 对复合薄膜电极的化学组成、形貌特征、光吸收性能进行表征,研究了光电化学性能. 研究表明:薄膜电极在过硫酸盐增强光电催化体系中对四溴双酚A(TBBPA)的降解率最高达97.2%. 过硫酸盐活化技术和光电催化耦合显著增强ZnO@N, C-Co3O4对TBBPA的催化降解效率. 提出了过硫酸盐增强光电催化降解TBBPA的机理,硫酸根自由基和羟基自由基是该体系的主要活性物种.  相似文献   

5.
利用微波吸收技术对Si衬底上微晶及纳米β-SiC薄膜的过剩载流子瞬态行为进行了分析.所用样品采用PECVD技术制备,微波吸收测量采用脉宽35 ps,波长355 nm脉冲激光.所测得的载流子浓度衰减分为快、慢2个过程,微波吸收瞬态特性满足双指数衰减规律.该结果表明,样品光生载流子衰减过程主要决定于2种陷阱作用,其中快过程与SiC薄膜中浅能级陷阱的载流子弛豫效应相关,而慢过程则是深能级陷阱的载流子弛豫行为占优势的结果.纳米碳化硅晶粒界面较高的缺陷态密度导致载流子俘获几率增加,非辐射复合几率减小,纳米β-SiC薄膜表现较长的载流子衰减时间.  相似文献   

6.
利用溶胶-凝胶法(Sol-Gel)制备ZnO、TiO2多层复合薄膜.测试手段采用X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、紫外-可见分光光度计(UV-Vis)分别对薄膜的结构、形貌和光学性能进行表征.研究固定浓度的ZnO在不同浓度的TiO2上进行叠涂的复合薄膜的光学性能.实验分别制备浓度为0.45 mol/L/0.45 mol/L、0.45 mol/L/0.55 mol/L、0.45 mol/L/0.65 mol/L、0.45 mol/L/0.75 mol/L的ZnO/TiO2双层膜.实验再进一步研究,在双层膜性能最好的薄膜的浓度基础上增加薄膜层数,制备TiO2/ZnO/TiO23层膜.结果表明:浓度为0.45 mol/L/0.55 mol/L的双层ZnO/TiO2复合薄膜的结晶质量好,吸光度较强,禁带宽度值为3.39 eV.将ZnO和TiO2薄膜复合后,会产生一个新的杂质能级,电子跃迁时能量增加,载流子迁移速度降低,禁带宽...  相似文献   

7.
通过CdBr2对全无机CsPbBr3钙钛矿薄膜进行钝化处理,研究不同浓度CdBr2的异丙醇溶液对全无机CsPbBr3钙钛矿太阳能电池光电性能的影响.结果表明:CdBr2钝化CsPbBr3钙钛矿表面后,降低了钙钛矿表面的Br空位缺陷密度,抑制了非辐射复合,促进了光生电子和空穴的抽取和传输,因此降低了界面光电子复合损失,使全无机钙钛矿太阳能电池器件的光电转换效率从6.58%提高到8.19%,开路电压从1.368 V提高到1.531 V.  相似文献   

8.
Tb3+和Gd3+掺杂的纳米TiO2薄膜的制备及发光性能与发光机   总被引:1,自引:0,他引:1  
以钛酸正丁酯[Ti(OBu)4]为前驱体, 采用溶胶 凝胶法制备Tb3+和Gd3+共掺杂的纳米TiO2发光薄膜, 并探讨了Gd3+对Tb3+的增敏作用机理. 通过X射线衍射(XRD)、 TG/DTA综合热分析仪、 傅里叶变换红外仪(FTIR)、 透射电子显微镜(TEM)和光致发光(PL)光谱分别对不同制备条件下的TiO2薄膜进行了表征. 结果表明, TiO2薄膜具有一定的择优取向, 晶相为锐钛矿相, 形成了良好有序的晶体结构, 且样品粒径分布均匀, 颗粒大小约为15 nm; 以230 nm作为激发光, Gd3+的共掺对纳米TiO2发光薄膜中Tb3+的发光有显著增强作用.  相似文献   

9.
在室温和实验室灯光照射条件下, 通过原位光化学反应, 分别以乙二胺和二亚乙基三胺为模板, 合成3种过氧桥连的草酸铀酰配合物[NH3(CH2)2NH3]3[(UO2)2O2(C2O4)4]·4H2O (1), [NH3(CH2)2NH2(CH2)2NH3]2[(UO2)2O2(C2O4)4]·2H2O (2)和[NH3(CH2)2NH2(CH2)2NH3]2[(UO2)2O2(C2O4)4] (3)。借助单晶X射线衍射、拉曼光谱(Raman)、粉末X射线衍射(PXRD)和热重分析(TGA), 对配合物的结构及其性质进行表征和分析。1和2中U-O2-U二面角为180°, 而通常过氧配合物的过氧二面角小于180°。2和3中过氧键的键长比正常的过氧键长短, 其中2更接近超氧键的键长, 但价态和拉曼图谱都表明其为过氧键。  相似文献   

10.
在典型有机空穴传输材料胺类衍生物NPB(N,N'-diphenyl-N,N'-bis(1-naphthyl) (1,1'-biphenyl)-4,4'diamine)中引入过渡金属氧化物MoO3制备了只有空穴传输的单载流子器件.结果表明:MoO3的引入明显提升了NPB的导电性能,在约2.0 V的外加电压下,100 nm厚纯NPB薄膜电流密度仅为1.28 mA/cm2,而同样厚度的掺杂薄膜NPB∶MoO3 (50 wt.%)电流密度达到了2 530 mA/cm2.同样掺杂比例的NPB∶MoO3薄膜吸收谱显示位于500 nm附近存在既不同于NPB也不同于MoO3的额外吸收峰,表明体系中产生了电荷转移复合物NPB-MoO-3,从而产生了额外的空穴载流子,进而提升了掺杂体系的导电性能.进一步的荧光分析表明,MoO3的引入对NPB自身荧光具有明显的猝灭作用.NPB∶MoO3(30 wt.%)薄膜的荧光强度比纯NPB薄膜荧光强度降低了2个数量级,NPB∶MoO3 (50 wt.%)掺杂薄膜的荧光强度降低为零.  相似文献   

11.
微波光电导技术可以获得半导体材料载流子复合动力学过程,为半导体材料的合成以及器件制备提供参考.为提高开放式微波光电导系统的测量精度,实验分析了激发光能量、开路与短路条件、样品与短路端距离、激发波长等各参量对测量的影响.结果 表明:当被测样品厚度与其载流子扩散长度相当时,短路条件下测量可以避免光电导信号的波动.优化样品与...  相似文献   

12.
该文探究了原位还原第四周期过渡金属盐(FeCl2、CoCl2、NiCl2、CuCl2和ZnCl2)催化氨硼烷水解产氢性能,发现它们催化氨硼烷水解产氢活性由高至低依次为CuCl2>CoCl2>NiCl2>FeCl2>ZnCl2,这些盐催化氨硼烷水解产氢速率与它们及其相应金属组成电对的标准还原电极电势呈近似线性关系,这说明标准还原电势越高,相应金属盐越易被还原为金属,对应金属催化剂催化氨硼烷水解产氢的活性越高.在原位还原CuCl2、CoCl2和NiCl2催化剂中分别存在金属Cu、Co和Ni物相,催化氨硼烷水解产氢速率较快.原位还原CoCl2、NiCl2和CuCl2催化氨硼烷水解产氢的最佳搅拌速率分别为210、480和210 r·min-1,最佳用量分别为0.001 0、0.000 5和0.002 0 mol,转化频率(TOF)分别为104.9 mol H2·mol-1Co·min-1、21.6 mol H2·mol-1Ni·min-1和217.2 mol H2·mol-1Cu·min-1.动力学计算结果表明原位还原CoCl2、NiCl2和CuCl2催化氨硼烷水解产氢的活化能分别为35、65和6 kJ·mol-1.原位还原CoCl2催化剂具有磁性,易与反应液分离,且团聚不明显,循环使用性能显著优于原位还原的CuCl2.  相似文献   

13.
采用浸渍-还原法制备了Ru/羟基磷灰石(HAP)催化剂,并考察了Ru负载量、还原剂硼氢化钠的用量、还原温度以及反应条件对催化剂Ru/HAP催化BH3NH3水解产氢的影响.结果表明:当Ru的负载质量分数为0.3%、Ru与还原剂硼氢化钠的物质的量比为1.0:2.2、还原温度为303 K时,Ru/HAP催化剂催化BH3NH3水解产氢的转化频率TOF为125 mol H2·mol-1Ru·min-1.当搅拌转速为450 r·min-1时,外扩散限制消除,产氢速率最大.产氢速率与催化剂浓度成正比,氨硼烷水解产氢反应由催化剂界面反应控制,Ru/HAP催化剂催化BH3NH3水解产氢反应对催化剂浓度反应级数为0.8.随着反应温度的升高,氨硼烷产氢速率系数增大,副产物偏硼酸钠越易从催化剂表面脱附,产氢速率逐渐增大.反应动力学计算表明Ru/HAP催化剂催化BH3NH3水解产氢反应对氨硼烷浓度为0级反应,活化能为44 kJ·mol-1.  相似文献   

14.
采用水热方法, 通过调节前驱体的pH值, 得到不同形貌的立方相Lu2O3:Eu3+纳米棒、纳米片和纳米颗粒。利用粉末X射线衍射(XRD)、扫描电镜(SEM)、傅里叶变换红外(FTIR)光谱、光致发光(PL)谱和荧光寿命(FL)等技术对所制备的纳米晶进行了系列表征。随着纳米晶尺寸的减少, 样品的荧光强度明显减弱, 这是由于吸附在纳米晶表面的OH-含量逐渐增加, 加速了非辐射弛豫从而降低了发光效率。此外, 也观测到源于纳米晶表面Eu3+离子的逐渐加强的624 nm发射以及在长波侧不断延伸的电荷迁移带长激发尾。  相似文献   

15.
采用溶剂热法制备了二维TiO2纳米片(2D TiO2),然后通过原位生长法在其表面沉积Ag3PO4,得到2D TiO2/Ag3PO4异质结复合光催化材料。通过透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、紫外可见分光光谱法(UV-Vis)、X射线光电子能谱(XPS)、N2吸附-脱附法(BET)等手段对催化材料进行了表征,评价了2D TiO2/Ag3PO4在可见光下催化降解罗丹明B (RhB)的性能,并结合荧光和电化学测试结果,提出了2D TiO2/Ag3PO4的可见光催化机理。结果表明,2D TiO2/Ag3PO4的吸附-光催化降解性能随着Ag3PO4含量的增加而提高;少量H2O2可以极大地提高2D TiO2/Ag3PO4的光催化活性;光催化降解RhB过程中的主要活性物质是·OH和·O-2,异质结的存在使2D TiO2/Ag3PO4具有比2D TiO2更优异的光催化活性、电荷分离能力和更快的光电子转移速率。  相似文献   

16.
采用两步阳极氧化法制备了TiO2纳米阵列(TNAs),然后分别采用浸泡法和电沉积法在TNAs表面负载碳点层和WO3层,得到WO3/碳点/TNAs复合纳米光阳极(TCW),并通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)和X射线光电子能谱仪(XPS)对其进行了表征。采用紫外可见漫反射光谱法(UV-Vis DRS)和电化学方法测定了TCW光阳极的光吸收和电化学性能,并评价了在模拟海水溶液中TCW对Q235碳钢的光致阴极保护作用。结果显示:与TNAs相比,TCW的吸收边从紫外光区(384 nm)扩展至可见光区(426 nm),带隙宽度(Eg)从3.23 eV降低到2.91 eV,对光的吸收能力显著提升;可见光响应电流密度提高了6.85倍,达到157 μA/cm2。将TCW光阳极与Q235碳钢阴极耦合后,阴极表面的稳态光响应电流密度达到101 μA/cm2;与耦合前相比,其自腐蚀电位降低了0.41 V (vs.Ag/AgCl),电化学电流噪声(ECN)振幅增大,腐蚀过程受到明显抑制。以上结果表明TCW对Q235碳钢具有优异的光致阴极保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号