首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
为研究浅埋大直径土压平衡盾构施工穿越砂卵石地层造成的地表沉降规律,以北京新机场线9m直径土压平衡盾构隧道为背景,对10m、12m、13m、15m四种覆土厚度下的地表最大沉降、沉降槽宽度、地层损失率进行了对比分析,并用Peck公式进行拟合。分析结果表明:相同施工参数下,隧道上方地表最大沉降和地层损失率随覆土厚度增加而减小且成拱覆土厚度附近存在变化速率的突然改变;深埋隧道测点沉降稳定时间较短,约为2天,浅埋隧道时间较长,约为4天;实测沉降槽宽度及沉降槽拟合曲线的宽度系数与隧道覆土厚度相关性不明显,实测沉降槽宽度约为隧道中线两侧1.5D范围(D为开挖直径);实测地层损失率与通过Peck公式反算的地层损失率都随隧道覆土厚度增大而减小。  相似文献   

2.
采用盾构法技术在隧道浅覆土区域推进施工,因考虑到土压力设置及相关联的地表沉降等诸多因素,给盾构施工带来了很大的难度。在浅覆土条件下穿越建构筑物则更加困难,需考虑的不仅是盾构推进的控制、还增加了建构筑物保护等多种因素。该文结合了武汉某地铁盾构区间施工标段的工程实例,针对盾构机浅覆土地铁隧道穿越大型雨污水箱涵施工的有关技术进行初步探索和总结。  相似文献   

3.
浅埋盾构隧道下穿既有公路时,车辆荷载作用下隧道拱顶不同深度覆土层会发生沉降,针对这一问题,提出一种盾构过程中拱顶覆土两阶段沉降分析模型,采用ABAQUS数值模拟(FEM)验证本文所建立沉降模型的正确性。研究结果表明:对Peck公式中土体体积损失参量进行修正并基于非线性荷载作用下的Boussinesq解所建立的等效地表两阶段沉降分析模型能有效预测车辆循环荷载和隧道盾构耦合作用下盾尾拱顶覆土沉降发展规律。在盾构过程中,盾尾拱顶覆土沉降扰动增加区段位于接近区至下穿区前2/5处,下穿区出现沉降峰值后进入沉降扰动平缓区段,远离区为沉降扰动减小区段,沉降发展规律符合Protodyakonov压力拱理论,沉降增加主要发生在压力拱破坏期间;盾构完成后,车辆循环荷载影响5 m左右深度的覆土层沉降,深度大于5 m时车辆荷载发生应力扩散,沉降主要影响因素为隧道开挖造成的土体体积损失。  相似文献   

4.
针对浅埋施工条件下盾构下穿桩板结构的开挖扰动问题展开研究.依托滨海软弱土层地铁盾构隧道开挖工程,结合现场原位测试和数值动态仿真,分别针对开挖顶进和盾尾注浆两个扰动阶段,分析近场和远场结构部件的受力变形规律,阐明扰动机制.结果表明:盾构开挖顶进阶段,顶推力对周围土体的放射挤压引起桩身横向弯曲及顶板抬升,刀盘驶过目标桩1.00D(D为开挖洞径)时,近场桩身变形达到最大;盾尾注浆阶段,在注浆层硬化前,顶板及近场桩身随土体出现回弹变形,并于刀盘驶过目标断面约3.00D后趋于稳定,此时顶板出现沉降槽;距离开挖空间1.00D的远场桩身先后受到顶推力的外扩挤压,以及隧道上部地层回弹沉降的横向推动作用,弯曲变形逐步增大,未表现出回弹变形.  相似文献   

5.
城市地铁隧道开挖会对围岩产生扰动并破坏其稳定性,严重时甚至引起地层失稳而造成路面塌陷事故。为研究城市地铁浅埋暗挖隧道施工所引起的地表沉降基本特征,本文以青岛硬岩(花岗岩)地层为例,通过室内三维模型试验对隧道开挖过程进行了动态模拟,总结出不同工况下开挖所引起的地表沉降规律,同时将数值模拟结果与室内试验结果作对比分析。研究结果表明:浅埋隧道的开挖会引起以地表沉降为主的地层变形,其横向沉降数值分布会呈现出“两侧小中间大”的沉降槽,这与数值模拟结果较为相符,即隧道正上方的沉降变形最大,越是偏离隧道中轴线则地表受开挖扰动越小;而纵向地表沉降则分为“缓慢变形”“剧烈变形”以及“变形稳定”三个阶段,上述阶段的影响范围基本维持在距掌子面-1.6D~1.6D(D为隧道洞径)之间。因此,试验所得结果可以应用在硬岩地区浅埋暗挖施工当中。  相似文献   

6.
从盾构开挖面平衡状态及隧道水底抗浮平衡条件着手,利用了泥水平衡盾构开挖工作面水土压力与密封舱内压力动态平衡公式,得到了超大直径盾构穿越江底底冲槽段浅覆土保持开挖面稳定的技术对策。结合南京过江隧道纬七路左线工程,提出超浅覆土情况下过江隧道泥水盾构施工应采取的工程对策。  相似文献   

7.
为研究大直径泥水盾构穿越复杂环境地表垂直变形规律,考虑盾构推力、盾体间隙及其填充、壁后间隙及其填充3个影响因素,提出了施工全过程地表垂直变形理论公式.结合武汉地铁盾构越江隧道工程,对大直径泥水盾构下穿棚户区施工全过程进行了三维数值模拟.公式计算结果与数值计算结果、监测值较为接近,吻合度高于Attewell修正的Peck公式.结果表明:(1)在分析大直径泥水盾构地表垂直变形时,需要充分考虑盾体间隙惰性填充材料的填充作用,可忽略盾壳与地层摩擦力的影响;(2)地表沉降沿隧道轴线变化曲线呈倒"S"形,开挖面后方26m(约两倍洞径)范围内土体变形速率极快,需及时加固;(3)同步注浆压力由0.3MPa提升至0.5MPa,可减小43.8%的最大沉降量,注浆压力适当提升对沉降控制作用十分明显.  相似文献   

8.
多线叠交盾构隧道近接施工模型试验   总被引:2,自引:0,他引:2       下载免费PDF全文
多线叠交软土盾构隧道是随地铁建设不断发展而出现的一种复杂隧道空间布置形式.针对多线叠交盾构隧道垂直上、下穿2种典型穿越施工形式,借助室内模型试验,根据盾构隧道近接施工的技术特点和控制要求,采用排液法,重点分析了多线叠交盾构隧道在各穿越阶段下因地层损失和开挖卸荷引起的地表沉降以及既有隧道纵向变形规律.分析结果可为今后类似多线叠交盾构隧道工程的设计和施工提供理论指导.  相似文献   

9.
盾构穿越复合地层尤其是上软下硬地层时, 开挖面失稳形式多样、受力机理复杂, 由于开挖面失稳而导致的工程灾害时有发生. 依托佛莞城际铁路隧道工程, 构建三维有限元数值模型并引入参数地层复合比对部分楔形体理论进行改进, 分析盾构穿越上软下硬地层时不同地层复合比和软土内摩擦角对开挖面稳定性的影响. 研究结果表明: 盾构开挖面最大变形出现在软土区域中某个特定位置, 与软土比例有关;开挖面位移随着支护压力的减小可分为缓慢增长、急剧增大、失稳破坏三个阶段, 当支护压力比接近极限支护压力比时, 开挖面变形将急剧增大;改进的部分楔形体模型理论解与数值模拟结果相吻合, 该理论具有一定的合理性. 研究成果可为类似地层隧道盾构施工提供一定的理论指导.  相似文献   

10.
城市地铁盾构隧道掘进会造成邻近建筑物发生结构变形及沉降。由于不同建筑物所处位置各异,盾构隧道穿越土体的上覆土厚度、岩层组合、地下水埋深等情况不一,因此,建筑物沉降规律存在较大的差异。文中基于南宁市水文地质条件、岩层组合模型及工程结构特征等因素对地铁盾构施工区间线路进行地质分区。根据盾构隧道施工引起的建筑物沉降曲线基本符合高斯分布的特点,结合建筑物的基础埋深、刚度、与隧道的相对位置等因素,对地表沉降Peck公式的地层参数进行修正,得到不同地质分区建筑物沉降预测公式。以南宁地铁一号线某区间为实例,将建筑物沉降预测公式计算值与实际监测值进行对比,结果表明两者拟合相关系数为82%,说明公式具有良好的适用性,可为南宁市地铁后续线路邻近建筑物沉降预测提供参考。  相似文献   

11.
为确保盾构安全顺利地下穿地铁运营U形槽线路,避免下穿过程中引起U形槽结构过量沉降,影响运营安全,以北京新机场线2、3号风井盾构区间大直径土压平衡盾构下穿既有大兴线U形槽为工程背景,研究了砂卵石地层盾构隧道开挖对U形槽变形影响。通过对U形槽结构竖向位移、横向位移、轨道竖向位移、轨距等大量监测数据进行分析,得出盾构隧道开挖过程中既有结构的变形规律。结果表明:下方隧道开挖会造成U形槽和轨道结构产生不均匀隆起、沉降变形,竖向变形在2. 0 mm以内;隧道横向变形表现为不规则波动,变形在±0. 5 mm以内;轨距变化在±1 mm以内。既有U形槽结构竖向位移与盾构掘进参数关系密切;通过严格控制盾构施工参数,采用二次注浆、深孔注浆方式对管片背后进行填充,可大幅减少结构沉降。研究结果可为控制U形槽结构变形,确保既有线运行的安全提供借鉴。  相似文献   

12.
潮滩开挖后回淤问题一直困扰航道建设和港口发展的突出问题,为探究胶州湾北部海湾整治工程在不同开挖方案下潮流场分布情况,本研究通过对胶州湾北部海域进行潮流数值模拟,基于二维平面不可压缩雷诺平均纳维埃-斯托克斯(Navier-Stokes)浅水方程,对比分析两种潮滩开挖方案对航道水动力条件及冲淤变形影响。研究结果表明,工程疏浚后,开挖区及附近海域涨潮流作用明显增强,落潮流深槽流速降低,产生进水加速,出水缓慢的效应,方案二涨潮流作用增强而落潮流减小效应大于方案一。工程完成以后,开挖区有所淤积,方案一潮滩开挖区年平均淤强约15.6cm/a, 方案二约为19.0cm/a,淤积强度由深水区向浅水区逐渐增加,工程疏浚产生的涨潮流增强、落潮流减弱的效应将使淤积加速。  相似文献   

13.
敞口式盾构在砂层掘进时会扰动周围土体,易引起地层坍塌.以北京地铁6号线2期敞口式盾构施工段为工程背景,阐述了国内首台挤压式敞口盾构机机体构造及开挖工序,通过地表沉降和地中水平位移监测,研究了盾构掘进对砂层的扰动特征.结合盾构掘进参数分析,探讨了减少土体扰动的控制措施.研究表明,盾构接近测孔区阶段,土体变形规律最复杂;通过和刚脱离测孔区阶段是土层变形控制的重要环节;盾构隧道轴线两侧1.5倍洞径范围内是土体扰动主要区域.所得结论可为砂土地层敞口式盾构施工地层位移控制提供可鉴参考.  相似文献   

14.
为研究地层参数和盾构掘进参数与地表沉降的非线性关联性,依托南京地铁6号线盾构区间,采用人工蜂群算法ABC优化BP神经网络,建立可预测地表沉降的ABC-BP神经网络模型。连续3个断面地表沉降预测结果表明:ABC-BP神经网络的预测精度和预测稳定性优于BP神经网络,且预测值与实测值一致;ABC-BP神经网络可较为准确地反映盾构机接近监测断面过程中的地表变形演变规律,最终实现地表变形控制的目的。提出了ABC-BP神经网络现场应用思路,构建了地层-掘进参数-沉降的关系,进而通过地层参数直接实现对盾构掘进参数和地表变形控制。  相似文献   

15.
土压平衡盾构中顶进推力的计算分析   总被引:1,自引:1,他引:0  
针对土压平衡盾构开挖过程中顶进推力难以确定的问题。采用理论计算与数值拟合相结合的方法,计算土仓和掘进面的等效压力,从而推导出隧道开挖所需的顶进推力。以实际工程为背景,利用ABAQUS在该顶进推力作用下地表沉降规律。结果表明:①该土仓与掘进面压力的计算方法适用于卵石地层;②盾构推进力为110 000 N时,开挖较为稳定;③监测与模拟的地表沉降值较为接近,两者之差小于2 mm。该研究对卵石地层中的盾构开挖具有一定的指导意义。  相似文献   

16.
浅埋小间距双线隧道关键施工技术研究   总被引:1,自引:0,他引:1  
翟向东 《河南科学》2008,26(4):448-450
针对某城市浅埋双线隧道工程的工程特点,对左右线施工时围岩屈服区域、围岩变位受左右洞施工相互影响情况以及岩柱区域的稳定性进行了分析,并对左右洞交替施工所引起的围岩位移和支护内力变化情况进行了研究,解决了台阶法施工时下台阶开挖时的拱顶下沉的原因和应对措施.  相似文献   

17.
地铁换乘站作为地下轨道交通运营线路中的主要枢纽,其开挖和施工造成的失稳变形将会直接影响到车辆运行、人员安全、地下管线设施和既有线路与建筑物。本文以成都地铁17号线换乘站为例,研究了卵石地层的地铁换乘站在深基坑开挖后沉降变形的发展趋势。通过相关性分析,从15项监测数据中分别选择出适合深基坑挖掘阶段和盾构施工阶段的沉降监测相关影响因素。分别借助径向基函数神经网络(RBF)、小波神经网络(WNN)、非线性回归模型(NARX)和极限学习机(ELM)四种智能算法对不同监测参数与监测点位在开挖阶段及盾构施工阶段的地表高程变形进行预测。研究表明:以上算法中在深基坑开挖阶段,WNN模型的预测结果最为精确,预测值和实测值最为接近;当后期预测的参数类别减少时,NARX模型在预测中表现最好,预测值的范围在单个数据点的误差在-0.4~0.3mm内;且监测数据表明在深基坑开挖的第三、四层阶段施工对沉降变形的影响最大,需要着重监测。由此,证实了智能算法在分析和预测卵石地层的地铁换乘站周边地表沉降变形有着较高的可行性,通过对比分析也得到算法模型在相似工程的研究中具有优势。  相似文献   

18.
地铁车站洞桩法施工对地层及邻近桩基的影响规律   总被引:4,自引:0,他引:4  
以北京地铁国贸站工程为背景,分析大跨度分离式地铁车站采用洞桩法施工,对周围地层及邻近桩基的影响.采用现场实测方法分析洞桩法施工地层沉降的规律,认为纵向沉降明显分为前期沉降区、急剧沉降区和沉降收敛区,而急剧沉降区又分为导洞、扣拱及下部开挖3个阶段;横向沉降符合Peck曲线,影响范围为3~4倍洞径.采用三维数值分析方法模拟施工过程,选取典型的邻近桩基所在断面,研究车站施工对邻近桩基变形以及地表沉降的影响,对国贸站邻近桩基变形现场量测数据进行对比分析,认为邻近桩基沉降变形与其施工过程相对应,也分为导洞、扣拱及下部土体开挖3个阶段.影响沉降的主要因素是其空间位置,特别是桩基与车站结构的最小距离,其次桩端所处的地层条件也有一定的影响;施工对邻近桩基水平方向的扰动影响非常显著,扣拱施工对邻近桩基的侧向变形影响最大.在此基础上总结了车站上侧桩、中侧桩、下侧桩等邻近桩基的变形规律.  相似文献   

19.
詹涛 《科学技术与工程》2023,23(14):6197-6206
为探究小曲率半径隧道盾构施工引起地表沉降的变化规律,利用Mindlin解建立小曲率半径隧道盾构施工引起地表沉降的解析计算模型,以南昌地铁1号线盾构隧道工程为依托,通过与现场监测和已有Mindlin解析计算模型的对比分析,验证本文所建立沉降预测模型的合理性,并依次从盾构附加推力、盾壳不均匀摩擦力和地层损失对地面变形的影响进行分析。结果表明:本文所建立的小曲率半径隧道盾构施工引起的地表沉降解析计算模型可有效应用于实际隧道工程的沉降预测,提高了预测精度;盾构开挖过程中,横断面地表沉降槽呈V形,近似正态分布,施工产生的地层损失对地面沉降的影响更大;随着盾构路径两侧推力及摩擦力分布不均程度的增加,地面沉降槽中心偏移情况而增大,地面沉降与地层损失呈非线性相关。研究结果可为类似拟建和在建盾构隧道工程提供理论指导与参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号