首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
以某深厚软土地区基坑支护为例,设计悬浮于软土中的水泥土框架作为基坑支护结构,兼顾解决软土基底的施工困难。在选择挡墙宽度、嵌固深度、坑内加固土体厚度等设计参数作为因素进行正交试验的基础上,完成基坑设计参数优选,可为类似基坑设计提供有益的参考。在深厚软土地区基坑支护工程中,利用坑底加固土与基坑侧壁重力式挡墙组合形成"悬浮"于软土层中的水泥土框架支护结构,能够有效控制基坑变形,保障施工过程中的基坑稳定。引入正交试验表安排基坑设计试算方案,可有效减少试算次数,提高基坑设计的效率。通过对试验结果进行方差分析可知,在深厚软土地区"悬浮式"水泥土框架支护结构中,坑底土体加固厚度对控制基坑的变形发挥极其重要的作用;其对墙顶水平位移、墙顶竖向位移和坑底隆起的贡献均超过80%。  相似文献   

2.
目的为解决基坑开挖时结构的安全与稳定问题,对基坑工程的变形进行分析,找出影响规律.方法以营口某深基坑工程实例为研究背景,整理现场得到的桩顶位移、地表沉降及深层土体水平位移等监测数据,对基坑工程的支护结构和周围土体及墙后土体在施工过程中产生的位移变化进行分析.结果支护结构相同的挡墙坑角处变形最小,中间位置变形最大,并且基坑变形随着开挖深度的增加而变大.开挖深度较大的软土地区基坑周边深层土体水平位移曲线类型大致表现为抛物线形,其最大水平位移大致为(2.0~10.0)×10-4hd,通常发生在基坑工程底部附近.结论深基坑工程的支护结构顶部水平位移与竖向位移变化趋势一致,表明二者的产生条件和影响因素大致相同.坑底部下面土体的水平位移对于坑底隆起有着直接影响,支护结构的强度越低,坑底部隆起的增强区域的范围也越大.  相似文献   

3.
复合土钉支护的软土基坑开挖有限元模拟分析   总被引:2,自引:0,他引:2  
基于平面应变假设,采用自行编制的有限元程序建立数值计算模型,考察某复合土钉支护工程下的软土基坑开挖变形性状及土钉的受力情况.结果表明,深搅桩-土钉/锚杆支护软土基坑中,锚杆张拉力的作用对基坑水平位移及受力影响较大;复合土钉支护结构并无特别针对坑底土体隆起的加固措施,须采用考虑时空效应的分层分块的开挖模式,以确保坑底隆起...  相似文献   

4.
坑底隆起易造成基坑坍塌及邻近建(构)筑物不均匀沉降,是影响基坑安全的关键因素之一。针对近10年国内外基坑抗隆起稳定性研究进展,阐释了基坑宽度、土体各向异性及支挡结构嵌固深度等因素对坑底抗隆起稳定性影响规律,列举了近年来基于地基承载力模式及圆弧滑动模式的基坑抗隆起安全系数改进公式,对比了不同改进公式对应的破坏机制及适用范围。进一步介绍了可靠度分析方法在坑底隆起失效概率计算中的运用及失效概率影响因素。最后总结了圆形基坑及坑中坑式基坑坑底隆起破坏机制及抗隆起安全系数计算方法。得到以下结论:(1)基坑越窄、土体各向异性比越低及支挡结构嵌固段越深对基坑坑底抗隆起稳定性越有利,但当支挡结构位于均质土层且端部未嵌入较硬土层时无法体现此规律;(2)基坑坑底隆起的失效概率与岩土体材料及土体参数的空间变异性有关,与安全系数无直接联系;(3)由于尚未建立统一的计算模型,且如何考虑三维效应及拱效应也未明确,圆形基坑抗隆起稳定性分析至今未有统一定论;坑中坑式基坑内外坑间距决定抗隆起破坏机制,抗隆起安全系数应根据内部型及外部型两种不同破坏机制分别计算。  相似文献   

5.
结合某淤泥质土环境基坑支护工程实例,采用有限元数值分析方法,探讨水泥土桩与混凝土桩组合支护结构(MC桩)力学变形特性,包括MC桩截面参数对支护结构水平位移、地表沉降以及坑底隆起量影响.研究结果表明,MC桩组合支护结构在淤泥质基坑中,有利于控制基坑变形,增加基坑稳定性;M桩挡墙宽度对减小支护结构变形效果明显,增大墙宽可以减小墙身弯矩以及支护结构墙体倾斜变形并且可降低坑底隆起量和坑外地表沉降量.而且,在同挡墙宽度情况下,有无C桩对控制支护结构变形和基坑变形也有很大的作用.  相似文献   

6.
MC桩组合支护结构工作性状的有限元分析   总被引:1,自引:0,他引:1  
水泥土桩与混凝土桩组合支护结构(MC桩)对基坑工程变形控制效果明显,在工程实践中开始得到应用.针对这种组合支护结构工作机理和变形特性研究较少,实际工程多采用经验设计法,缺乏理论依据.应用有限单元法分析了组合支护结构在基坑开挖条件下的工作性状,分析了M桩入土深度、墙体宽度、C桩桩长和土体性质等因素对组合支护结构水平位移、基坑隆起、地面沉降以及桩身内力的影响.分析表明,增大M桩挡墙宽度或增加C桩桩长对支护结构变形、坑底隆起及地表沉降控制效果明显,研究结果对组合支护结构的设计具有参考价值.  相似文献   

7.
针对深基坑工程变形对周围环境稳定性影响的问题,结合某深基坑工程变形监测数据,运用Midas/GTS建立基坑支护结构三维有限元模型.采用单因素分析法,研究土体弹性模量、围护桩入土深度及刚度对基坑变形的影响.结果表明:带一道内支撑的基坑围护桩墙水平侧移值在围护桩底部最大,基坑外地表沉降是典型抛物线形式;围护桩水平侧移主要受基坑底部土体模量影响;围护桩入土深度对坑底土体隆起影响显著;当入土深度及刚度处于合适比例时才能发挥各自的最大作用.  相似文献   

8.
沈阳东森商务广场深基坑工程位置毗邻沈阳市政府和市区主要交通干线,基坑平面形状复杂,开挖深度大。为了进一步研究沈阳地区深基坑开挖对土体变形和应力影响规律,控制基坑侧壁与支护结构变形,采用现场原位测试获得的土体参数,应用有限元软件ADINA建立三维模型,对施工过程进行了动态模拟分析。并对支护结构水平位移进行了现场监测,监测结果与数值模拟结果基本吻合,验证了模型的可行性和模拟结果的可靠性。分析结果表明,基坑侧壁的最大水平位移发生在顶部,坑底隆起值越靠近基坑中心越大,向坑壁方向逐渐减小。锚索轴向应力在锚固段顶点有应力集中现象,反映出锚固段的锚固效果较好。在坑底坡脚位置土体主应力集中,该区域为土体塑性破坏区,建议对该处进行加固处理。  相似文献   

9.
管廊穿越富水软弱地层时,对其安全建设产生了不容忽视的影响。为了研究富水地层管廊基坑开挖变形的稳定性,依托济南新东站开源路富水地层管廊基坑工程,分析影响基坑开挖变形的关键因素,提出基坑周边土体变形破坏影响因素的敏感性评价指标,建立基坑底板抗突涌稳定性系数及隔水层临界厚度公式。结果表明:随开挖深度和承压水头增加,水平位移具有分层现象,深层呈“月牙形”,最大变形位于基坑底部两侧下部,呈现向桩后和基坑中心靠拢趋势;地表沉降呈凹槽形,从基坑边向两侧呈先增大后减小趋势,而隆起变形越靠近基坑中心越大,施工中应注意基坑底部两侧向中间过度时出现的较大隆起值。基坑周围土体变形破坏影响因素指标敏感性大小依次为开挖深度、加固厚度和承压水头,施工时要适当采取降水措施,预留足够的隔水层厚度,加固坑底以增强其稳定性,更要适当控制基坑开挖深度;与传统法相比,考虑土体抗剪强度所计算的基坑抗突涌稳定性系数较大,隔水层临界厚度较小,与现场情况更加吻合。  相似文献   

10.
以厦门轨道交通1号线杏锦路站基坑支护工程为案例,运用有限元和理正深基坑设计软件,通过数值模拟结果分析基坑开挖坑底回弹的规律和不对称开挖对地铁工程的影响.研究发现,离基坑边越远、开挖越深,坑底土体回弹越明显;土体不对称开挖产生土体偏压,桩前塑性区范围与基坑开挖深度成正比,且在土体偏压一侧比另一侧明显.为保护地铁工程结构的功能性和安全性,可采用排桩+预应力锚索结合排桩+内支撑支护方案,解决基坑整体稳定性和变形控制问题;可采用土方分层分段分块、均匀、对称的开挖方案,减少土体偏压对支护结构的影响.  相似文献   

11.
填海区由于软土较厚,在填海区开挖基坑风险较大,若开挖基坑同时临近地铁隧道则还必须严格控制基坑开挖对临近地铁隧道产生的变形影响,因此在填海区位于地铁安保区内开挖基坑对变形控制要求极高。本文详细介绍了深圳填海地区、地铁安保区内某超大直径圆环撑软土深基坑变形控制技术,通过理论计算和三维有限元计算进行了详细分析,并与第三方实际监测结果作了对比分析,对类似工程具有参考及指导意义。得出的结论:(1)支护结构的最大变形随着基坑开挖深度的增加而逐步增大,基坑开挖至坑底后,整体变形最大位置位于基坑两侧长边中部采用圆环支撑部位。基坑开挖至坑底时,第一道支撑最大水平位移发生在大约基坑中部冠梁位置,第二道支撑最大水平位移发生在大约基坑西北侧冠梁位置。(2)咬合桩+刚度较大的超大直径环形钢筋砼撑结构应用于较差地质条件下的软土深基坑工程中时在变形控制及减小基坑工程对周边变形影响等方面均非常有效。(3)基坑开挖过程中,三种方式所反映出的支护结构水平位移的变化趋势基本相同,随着基坑向下不断开挖,支护结构的最大水平位移量逐渐增加,但变化幅度有一定的差异。  相似文献   

12.
针对车站深基坑施工中的变形与稳定性问题,以地表沉降变形≤22 mm 、土体侧向位移≤20 mm及等效安全系数SSR等为评价指标,研究不同深基坑开挖进程中地表沉降变形、底部土体隆起变形、深基坑内支撑稳定性和连续墙及墙后土体变形的演化规律,结果表明:地表土体受基坑开挖引起的变形规律呈“抛物线型”,最大沉降量0.5 mm;基坑底部最大隆起量23 cm,主要发生在粉质黏土层,在风化花岗岩层终止;支护结构以受压为主,局部受拉,整体稳定性良好;连续墙长轴方向中间墙体受后方土体挤压向基坑内产生1.25 cm变形,连续墙后2 m处土体最大变形量为1 mm,整体稳定;通过实测地表沉降量并与模拟结果进行对比,表明数值模拟结果可较好的获取基坑开挖过程中的变形规律,研究结果可为施工顺利进行提供有益指导。  相似文献   

13.
为了有效地计算基坑坑底隆起变形,以基坑坑底所在的平面为基准参考面,把开挖隆起变形看作是坑底土体在上覆土重作用下固结稳定后的卸荷回弹过程,结合土力学中求解地基附加应力的Boussinesq解和“角点法”分析的叠加原理,并考虑残余应力的影响,建立了坑底以下任一深度处土体的卸荷应力和残余应力表达式。同时基于基础沉降计算分层总和法的思路推导了坑底土体回弹量的简化计算公式,从而可用土体的压缩性指标来确定其回弹变形。通过工程实例的对比分析,该简化公式是合理的,且在一定程度上反应了基坑开挖的空间效应。  相似文献   

14.
以深圳地区某桩锚支护深基坑为依托,基于有限元软件PLAXIS的土体硬化(hardening soil,HS)模型对深基坑降水开挖过程进行数值计算,得出降水开挖过程中变形随时间变化的规律,并在考虑时间变化的前提下,分析了考虑流固耦合与不考虑流固耦合深基坑变形和支护结构内力计算结果.研究结果表明:①桩体水平位移和坑外地表沉降在开挖后设置的固结期产生了回弹现象,而固结期后的坑底隆起量相对于开挖后有所增长;②考虑流固耦合与未考虑流固耦合时相比,最终桩体水平位移和坑外地表沉降都明显增大,坑底隆起明显减小,降水对桩体竖向位移和对坑底土体变形有类似的影响规律,并且桩体对坑底隆起具有限制作用;③坑底以上的桩身弯矩,考虑流固耦合时更大,而坑底以下部分恰好相反;另外,考虑流固耦合时的最终轴力小于不考虑流固耦合时的最终轴力.  相似文献   

15.
某基坑受连续降雨影响,基坑围护结构及其紧邻桥梁桩基受力变形影响较大,施工安全风险大增。为此,本文基于饱和与非饱和土体强度参数变化规律和线性内插法对坑内土体力学参数进行计算,结合现场实测数据,采用有限元模拟分析了坑内降水及开挖所引起的围护结构受力变形规律及紧邻桥梁桩基变形规律,并探讨了降雨时长对基坑围护结构变形影响。结果表明,基坑开挖至坑底,围护结构发生“踢脚”大变形,易引起第一道混凝土支撑受拉脱落,最大水平位移发生在围护结构底部;桥梁桩基减弱了因开挖引起的基坑周围土体滑移,造成围护结构两侧受力不对称,导致其远离桩基侧变形过大;降雨引起坑内部分土体软化,使得围护结构水平位移进一步增大;在基坑非饱和区范围内且降雨强度一定时,围护结构水平位移量随降雨时长呈非线性加速增长趋势。  相似文献   

16.
基坑开挖卸荷将改变地应力平衡状态,位于基坑正下方的地铁隧道将随基底一定深度范围内土层回弹而发生上浮变形。本文结合深圳地铁11号线正上方某采用竖井工法开挖的基坑工程为例,通过建立三维有限元模型分析下卧地铁隧道随竖井开挖过程的变形规律及竖井工法保护机制。结果表明:基坑开挖对下卧地铁隧道竖向卸荷作用显著,采用竖井工法能有效减缓隧道上浮趋势,减小最终上浮量;隧道纵向变形呈双峰形态,纵向变形曲率半径未超过规定值;隧道横截面随开挖过程而发生两侧拱腰压缩、拱顶与拱底之间拉伸的变形趋势,附加弯矩随开挖卸载率增大而逐渐减小,最大附加弯矩位于拱顶附近;竖井工法能减小基底土层的扰动程度,有效抑制基底土体以及隧道围土塑性区发展深度和面积,从而有效控制下卧地铁隧道的隆起量。  相似文献   

17.
随着城市地下空间的大规模开发,基础埋深不断增大,地下水的浮力也随之加大,易导致施工过程中基坑上浮或影响地下结构正常使用。抗拔桩因施工时对桩周岩土体扰动较小,工艺简单,施工便捷,抗浮效果好等优势,被广泛应用于抗浮工程中。目前,抗拔桩的力学特性、承载能力和变形特征等是现阶段抗拔桩在抗浮工程中的研究热点。本文主要从抗拔桩的作用机理、常见的破坏形式及极限承载力等方面进行了归纳分析,梳理了抗拔桩在数值模拟方面的研究进展,提出了抗拔桩在抗浮工程中存在的一些问题,并为抗拔桩在地下结构抗浮领域的未来发展提供了新的思路。  相似文献   

18.
降水渗流引起的基坑变形问题十分复杂,采用流固耦合的数值方法,以兰州某地铁车站红砂岩深基坑为研究背景。对围护桩体水平位移、基坑内外土体竖向位移和水位变化进行现场监测,利用FLAC3D建立车站基坑降水开挖耦合模型,分析了围护结构的变形特性以及基坑内外土体竖向变形规律。结果表明围护桩体最大水平位移在0.5倍左右坑深处;基坑开挖对周围土体在0至2.5倍坑深范围内的沉降变形影响显著,最大沉降值发生在距离基坑边缘约0.55倍坑深;降水引起的基坑内外沉降随时间增加呈减小的趋势,降水与立柱桩联合作用使坑底隆起显著减小,基坑内外同时降水有利于解决红砂岩透水问题。考虑流固耦合的数值模拟与现场监测相结合预测兰州地区基坑变形更具科学性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号