共查询到20条相似文献,搜索用时 15 毫秒
1.
Lourens LJ Sluijs A Kroon D Zachos JC Thomas E Röhl U Bowles J Raffi I 《Nature》2005,435(7045):1083-1087
At the boundary between the Palaeocene and Eocene epochs, about 55 million years ago, the Earth experienced a strong global warming event, the Palaeocene-Eocene thermal maximum. The leading hypothesis to explain the extreme greenhouse conditions prevalent during this period is the dissociation of 1,400 to 2,800 gigatonnes of methane from ocean clathrates, resulting in a large negative carbon isotope excursion and severe carbonate dissolution in marine sediments. Possible triggering mechanisms for this event include crossing a threshold temperature as the Earth warmed gradually, comet impact, explosive volcanism or ocean current reorganization and erosion at continental slopes, whereas orbital forcing has been excluded. Here we report a distinct carbonate-poor red clay layer in deep-sea cores from Walvis ridge, which we term the Elmo horizon. Using orbital tuning, we estimate deposition of the Elmo horizon at about 2 million years after the Palaeocene-Eocene thermal maximum. The Elmo horizon has similar geochemical and biotic characteristics as the Palaeocene-Eocene thermal maximum, but of smaller magnitude. It is coincident with carbon isotope depletion events in other ocean basins, suggesting that it represents a second global thermal maximum. We show that both events correspond to maxima in the approximately 405-kyr and approximately 100-kyr eccentricity cycles that post-date prolonged minima in the 2.25-Myr eccentricity cycle, implying that they are indeed astronomically paced. 相似文献
2.
Pagani M Pedentchouk N Huber M Sluijs A Schouten S Brinkhuis H Damsté JS Dickens GR;Expedition Scientists 《Nature》2006,442(7103):671-675
The Palaeocene/Eocene thermal maximum represents a period of rapid, extreme global warming 55 million years ago, superimposed on an already warm world. This warming is associated with a severe shoaling of the ocean calcite compensation depth and a >2.5 per mil negative carbon isotope excursion in marine and soil carbonates. Together these observations indicate a massive release of 13C-depleted carbon and greenhouse-gas-induced warming. Recently, sediments were recovered from the central Arctic Ocean, providing the first opportunity to evaluate the environmental response at the North Pole at this time. Here we present stable hydrogen and carbon isotope measurements of terrestrial-plant- and aquatic-derived n-alkanes that record changes in hydrology, including surface water salinity and precipitation, and the global carbon cycle. Hydrogen isotope records are interpreted as documenting decreased rainout during moisture transport from lower latitudes and increased moisture delivery to the Arctic at the onset of the Palaeocene/Eocene thermal maximum, consistent with predictions of poleward storm track migrations during global warming. The terrestrial-plant carbon isotope excursion (about -4.5 to -6 per mil) is substantially larger than those of marine carbonates. Previously, this offset was explained by the physiological response of plants to increases in surface humidity. But this mechanism is not an effective explanation in this wet Arctic setting, leading us to hypothesize that the true magnitude of the excursion--and associated carbon input--was greater than originally surmised. Greater carbon release and strong hydrological cycle feedbacks may help explain the maintenance of this unprecedented warmth. 相似文献
3.
Sexton PF Norris RD Wilson PA Pälike H Westerhold T Röhl U Bolton CT Gibbs S 《Nature》2011,471(7338):349-352
'Hyperthermals' are intervals of rapid, pronounced global warming known from six episodes within the Palaeocene and Eocene epochs (~65-34 million years (Myr) ago). The most extreme hyperthermal was the ~170 thousand year (kyr) interval of 5-7 °C global warming during the Palaeocene-Eocene Thermal Maximum (PETM, 56?Myr ago). The PETM is widely attributed to massive release of greenhouse gases from buried sedimentary carbon reservoirs, and other, comparatively modest, hyperthermals have also been linked to the release of sedimentary carbon. Here we show, using new 2.4-Myr-long Eocene deep ocean records, that the comparatively modest hyperthermals are much more numerous than previously documented, paced by the eccentricity of Earth's orbit and have shorter durations (~40?kyr) and more rapid recovery phases than the PETM. These findings point to the operation of fundamentally different forcing and feedback mechanisms than for the PETM, involving redistribution of carbon among Earth's readily exchangeable surface reservoirs rather than carbon exhumation from, and subsequent burial back into, the sedimentary reservoir. Specifically, we interpret our records to indicate repeated, large-scale releases of dissolved organic carbon (at least 1,600 gigatonnes) from the ocean by ventilation (strengthened oxidation) of the ocean interior. The rapid recovery of the carbon cycle following each Eocene hyperthermal strongly suggests that carbon was re-sequestered by the ocean, rather than the much slower process of silicate rock weathering proposed for the PETM. Our findings suggest that these pronounced climate warming events were driven not by repeated releases of carbon from buried sedimentary sources, but, rather, by patterns of surficial carbon redistribution familiar from younger intervals of Earth history. 相似文献
4.
The debut of undoubted euprimates (primates of modern aspect) was in the early Eocene, about 55 Myr ago. Since their first appearance, the earliest euprimates can be distinguished as Cantius, Donrussellia and Teilhardina. Nonetheless, the earliest euprimates are primarily known from isolated teeth or fragmentary jaws. Here we describe a partially preserved euprimate skull with nearly complete upper and lower dentition, which represents a new species of Teilhardina and constitutes the first discovery of the genus in Asia. The new species is from the upper section of Lingcha Formation, Hunan Province, China, with an estimated age of 54.97 Myr ago. Morphology and phylogeny analyses reveal that the new species is the most primitive species of Teilhardina, positioned near the root of euprimate radiation. This discovery of the earliest euprimate skull known to date casts new light on the debate concerning the adaptive origin of euprimates, and suggests that the last common ancestor of euprimates was probably a small, diurnal, visually oriented predator. 相似文献
5.
J Pross L Contreras PK Bijl DR Greenwood SM Bohaty S Schouten JA Bendle U Röhl L Tauxe JI Raine CE Huck T van de Flierdt SS Jamieson CE Stickley B van de Schootbrugge C Escutia H Brinkhuis;Integrated Ocean Drilling Program Expedition Scientists 《Nature》2012,488(7409):73-77
The warmest global climates of the past 65 million years occurred during the early Eocene epoch (about 55 to 48 million years ago), when the Equator-to-pole temperature gradients were much smaller than today and atmospheric carbon dioxide levels were in excess of one thousand parts per million by volume. Recently the early Eocene has received considerable interest because it may provide insight into the response of Earth's climate and biosphere to the high atmospheric carbon dioxide levels that are expected in the near future as a consequence of unabated anthropogenic carbon emissions. Climatic conditions of the early Eocene 'greenhouse world', however, are poorly constrained in critical regions, particularly Antarctica. Here we present a well-dated record of early Eocene climate on Antarctica from an ocean sediment core recovered off the Wilkes Land coast of East Antarctica. The information from biotic climate proxies (pollen and spores) and independent organic geochemical climate proxies (indices based on branched tetraether lipids) yields quantitative, seasonal temperature reconstructions for the early Eocene greenhouse world on Antarctica. We show that the climate in lowland settings along the Wilkes Land coast (at a palaeolatitude of about 70° south) supported the growth of highly diverse, near-tropical forests characterized by mesothermal to megathermal floral elements including palms and Bombacoideae. Notably, winters were extremely mild (warmer than 10?°C) and essentially frost-free despite polar darkness, which provides a critical new constraint for the validation of climate models and for understanding the response of high-latitude terrestrial ecosystems to increased carbon dioxide forcing. 相似文献
6.
The earliest known proboscidean remains have now been found at a new early Eocene locality at Brezina in southern Algeria (El Kohol). These new finds, represented by complete skulls and postcranial material, show several unexpected derived characters shared with the modern representatives of the Elephantoidea and the Deinotheriidae, suggesting close phylogenetic affinities and demonstrating also the great antiquity of the differentiation of modern proboscideans in Africa. These remains have been dated by associated charophyte flora and vertebrate remains which constitute the oldest known vertebrate community from the African Eocene. 相似文献
7.
Release of methane from a volcanic basin as a mechanism for initial Eocene global warming 总被引:4,自引:0,他引:4
Svensen H Planke S Malthe-Sørenssen A Jamtveit B Myklebust R Rasmussen Eidem T Rey SS 《Nature》2004,429(6991):542-545
A 200,000-yr interval of extreme global warming marked the start of the Eocene epoch about 55 million years ago. Negative carbon- and oxygen-isotope excursions in marine and terrestrial sediments show that this event was linked to a massive and rapid (approximately 10,000 yr) input of isotopically depleted carbon. It has been suggested previously that extensive melting of gas hydrates buried in marine sediments may represent the carbon source and has caused the global climate change. Large-scale hydrate melting, however, requires a hitherto unknown triggering mechanism. Here we present evidence for the presence of thousands of hydrothermal vent complexes identified on seismic reflection profiles from the V?ring and M?re basins in the Norwegian Sea. We propose that intrusion of voluminous mantle-derived melts in carbon-rich sedimentary strata in the northeast Atlantic may have caused an explosive release of methane--transported to the ocean or atmosphere through the vent complexes--close to the Palaeocene/Eocene boundary. Similar volcanic and metamorphic processes may explain climate events associated with other large igneous provinces such as the Siberian Traps (approximately 250 million years ago) and the Karoo Igneous Province (approximately 183 million years ago). 相似文献
8.
The phylogenetic relationships of living tarsiers and extinct omomyid primates are critical for deciphering the origin and relationships of primate higher taxa, particularly anthropoids. Three competing phylogenetic hypotheses are: (1) tarsiers are most closely related to early Cenozoic Omomyidae, particularly genera such as Necrolemur from the late Eocene of Europe; (2) tarsiers share a more recent common ancestry with anthropoids than they do with any known omomyid; (3) tarsiers and/or omomyids are most closely related to strepsirhines. The anatomy of four skulls of the early Eocene omomyid Shoshonius cooperi--the first cranial material recovered for this genus--strongly suggests that Shoshonius shares a more recent common ancestry with Tarsius than do either anthropoids or other Eocene omomyids for which cranial anatomy is known. If the primate suborder Haplorhini (anthropoids, omomyids, tarsiids) is monophyletic, the phylogenetic position of Shoshonius requires that anthropoids and Tarsius diverged by at least the early Eocene, some 15 million years before the first appearance of anthropoids in the fossil record. 相似文献
9.
10.
Grains of dust that pre-date the Sun provide insights into their formation around other stars and into the early evolution of the Solar System. Nanodiamonds recovered from meteorites, which originate in asteroids, have been thought to be the most abundant type of presolar grain. If that is true, then nanodiamonds should be at least as abundant in comets, because they are thought to have formed further out in the early Solar System than the asteroid parent bodies, and because they should be more pristine. Here we report that nanodiamonds are absent or very depleted in fragile, carbon-rich interplanetary dust particles, some of which enter the atmosphere at speeds within the range of cometary meteors. One interpretation of the results is that some (perhaps most) nanodiamonds formed within the inner Solar System and are not presolar at all, consistent with the recent detection of nanodiamonds within the accretion discs of other young stars. An alternative explanation is that all meteoritic nanodiamonds are indeed presolar, but that their abundance decreases with heliocentric distance, in which case our understanding of large-scale transport and circulation within the early Solar System is incomplete. 相似文献
11.
12.
13.
祝彦贺 《西安石油大学学报(自然科学版)》2011,26(6):1-9
界定珠江口盆地早中新世的陆架古珠江三角洲为“背景源”,陆坡的峡谷水道为“输送渠”,陆坡内深水扇为“沉积汇”.三者形成“源-汇”沉积系统,将该系统划分为陆架子系统和陆坡子系统.相对海平面升降、区域构造运动和物源供给强度控制了该系统的发育、演化.在三级层序等时格架内,低位期陆架子系统内的古珠江三角洲发育为陆架边缘三角洲,其... 相似文献
14.
15.
The Eocene and Oligocene epochs (approximately 55 to 23 million years ago) comprise a critical phase in Earth history. An array of geological records supported by climate modelling indicates a profound shift in global climate during this interval, from a state that was largely free of polar ice caps to one in which ice sheets on Antarctica approached their modern size. However, the early glaciation history of the Northern Hemisphere is a subject of controversy. Here we report stratigraphically extensive ice-rafted debris, including macroscopic dropstones, in late Eocene to early Oligocene sediments from the Norwegian-Greenland Sea that were deposited between about 38 and 30 million years ago. Our data indicate sediment rafting by glacial ice, rather than sea ice, and point to East Greenland as the likely source. Records of this type from one site alone cannot be used to determine the extent of ice involved. However, our data suggest the existence of (at least) isolated glaciers on Greenland about 20 million years earlier than previously documented, at a time when temperatures and atmospheric carbon dioxide concentrations were substantially higher. 相似文献
16.
Episodic fresh surface waters in the Eocene Arctic Ocean 总被引:1,自引:0,他引:1
Brinkhuis H Schouten S Collinson ME Sluijs A Sinninghe Damsté JS Dickens GR Huber M Cronin TM Onodera J Takahashi K Bujak JP Stein R van der Burgh J Eldrett JS Harding IC Lotter AF Sangiorgi F van Konijnenburg-van Cittert H de Leeuw JW Matthiessen J Backman J Moran K;Expedition Scientists 《Nature》2006,441(7093):606-609
It has been suggested, on the basis of modern hydrology and fully coupled palaeoclimate simulations, that the warm greenhouse conditions that characterized the early Palaeogene period (55-45 Myr ago) probably induced an intensified hydrological cycle with precipitation exceeding evaporation at high latitudes. Little field evidence, however, has been available to constrain oceanic conditions in the Arctic during this period. Here we analyse Palaeogene sediments obtained during the Arctic Coring Expedition, showing that large quantities of the free-floating fern Azolla grew and reproduced in the Arctic Ocean by the onset of the middle Eocene epoch (approximately 50 Myr ago). The Azolla and accompanying abundant freshwater organic and siliceous microfossils indicate an episodic freshening of Arctic surface waters during an approximately 800,000-year interval. The abundant remains of Azolla that characterize basal middle Eocene marine deposits of all Nordic seas probably represent transported assemblages resulting from freshwater spills from the Arctic Ocean that reached as far south as the North Sea. The termination of the Azolla phase in the Arctic coincides with a local sea surface temperature rise from approximately 10 degrees C to 13 degrees C, pointing to simultaneous increases in salt and heat supply owing to the influx of waters from adjacent oceans. We suggest that onset and termination of the Azolla phase depended on the degree of oceanic exchange between Arctic Ocean and adjacent seas. 相似文献
17.
Bottom water warming in the North Pacific Ocean 总被引:1,自引:0,他引:1
Observations of changes in the properties of ocean waters have been restricted to surface or intermediate-depth waters, because the detection of change in bottom water is extremely difficult owing to the small magnitude of the expected signals. Nevertheless, temporal changes in the properties of such deep waters across an ocean basin are of particular interest, as they can be used to constrain the transport of water at the bottom of the ocean and to detect changes in the global thermohaline circulation. Here we present a comparison of a trans-Pacific survey completed in 1985 (refs 4, 5) and its repetition in 1999 (ref. 6). We find that the deepest waters of the North Pacific Ocean have warmed significantly across the entire width of the ocean basin. Our observations imply that changes in water properties are now detectable in water masses that have long been insulated from heat exchange with the atmosphere. 相似文献
18.
Although the first ten million years of whale evolution are documented by a remarkable series of fossil skeletons, the link to the ancestor of cetaceans has been missing. It was known that whales are related to even-toed ungulates (artiodactyls), but until now no artiodactyls were morphologically close to early whales. Here we show that the Eocene south Asian raoellid artiodactyls are the sister group to whales. The raoellid Indohyus is similar to whales, and unlike other artiodactyls, in the structure of its ears and premolars, in the density of its limb bones and in the stable-oxygen-isotope composition of its teeth. We also show that a major dietary change occurred during the transition from artiodactyls to whales and that raoellids were aquatic waders. This indicates that aquatic life in this lineage occurred before the origin of the order Cetacea. 相似文献
19.
20.
Ocean circulation in a warming climate 总被引:4,自引:0,他引:4