共查询到17条相似文献,搜索用时 196 毫秒
1.
江太辉 《五邑大学学报(自然科学版)》2003,17(1):23-26
将神经网络预测模型(NPM)应用于说话人识别中,经过实验,获得了较满意的结果。这说明神经网络对于说话人识别是一种很有潜力的方法。 相似文献
2.
针对特征语音说话人自适应算法的缺陷,提出了基于结构化特征语音模型的区别性说话人自适应方法.该算法能根据自适应数据量调整自适应参数,并采用基于最大互信息量准则的区别性参数估计方法,进一步提高了自适应性能.有监督自适应的实验结果表明,在仅有一句自适应语句的情况下系统误识率相对下降了6.7%,同时算法表现出了优于特征语音自适应方法的渐进性能. 相似文献
3.
语音识别和说话人识别中各倒谱分量的相对重要性 总被引:37,自引:0,他引:37
采用增减特征分量的方法研究了MFCC各维倒谱分量对说话人识别和语音识别的贡献。使用DTW测度,在标准英文数字语音库上的实验表明,最有用的语音信息包含在MFCC分量C1到C12之间,最有用的说话人信息包含在MFCC分量C2到C16之间。MFCC分量C0和C1包含有负作用的说话人信息,将其作为特征会引起识别率的降低。低阶MFCC分量较高阶分量更容易受加性噪声和卷积噪声干扰。 相似文献
4.
基于语音识别的说话人身份辨识系统 总被引:2,自引:0,他引:2
提出一种在小字库孤立语音条件下,集成语音识别与说话人的识别技术,并进行说话人身份代码(密码)识别、认证.利用语音信号的短时分析技术进行孤立词的单元分割,采用临界带特征矢量作为语音信号特征,分析了经典语音识别算法——动态时间规整算法,提出了对语音模板各帧加权的改进方法.为提高识别响应速度,研究了多门限多轮次的判决方法,在增加多套模板、提高识别率的情况下,降低了系统的响应时间. 相似文献
5.
对于基于Gauss混合模型-通用背景模型(Gaussianmixure model-universal background model,GMM-UBM)方法的文本无关说话人识别,当测试语音时长缩短到很短时,识别率会严重下降。为了充分利用文本内容信息,该文提出了一种基于K-top多音素类模型混合(KPCMMM)的建模方法。在音素识别阶段,利用语音识别得到训练语音的音素序列,在说话人识别阶段利用音素序列对每个说话人训练多个音素类模型,测试语音则在最相近的音素类模型上进行打分判决,K是选取的相近音素类数。由于音素类定义的不同,KPCMMM方法分为基于专家知识和数据驱动这两类。实验结果显示选择合适的K值可以得到更好的识别结果。不同的音素类定义方法的比较实验结果显示:当测试语音时长小于2s时,对比GMM-UBM基线系统,该方法的等错误率(EER)相对下降38.60%。 相似文献
6.
连续语音识别中的说话人快速自适应技术 总被引:2,自引:0,他引:2
语音识别技术中说话人快速自适应技术受到普遍关注。该文综述了说话人快速自适应技术在国际上的研究现状 ,并且介绍了本研究组提出的快速自适应方法 ,即最大似然模型插值快速自适应框架及插值算法。与现有的相关自适应方法相比 ,该算法在更复杂的识别系统上同时实现了均值和协方差的自适应 ,并取得较好的自适应效果。当仅有一句自适应数据时 ,识别系统的误识率从 2 8.75 %下降到2 4 .93%。 相似文献
7.
针对语音识别系统中快速说话人自适应问题,提出了一种支持说话人权重算法.该算法通过支持说话人的计算实现了说话人选择与自适应参数的降维,减少了自适应时的存储量,有效提高了自适应数据较少时的性能.有监督自适应的实验结果表明,在仅有一句自适应语句的情况下系统误识率相对非特定人(SI)系统下降了5.82%,明显优于其他快速自适应算法. 相似文献
8.
本论文重点对语音特征参数的组合进行了研究,通过参数的特征组合从不同的角度来反映说话人的个性特征,能够大大提高说话人识别系统的识别率。对其中的特征参数(MFCC及LPCC)的特性及提取过程进行了详细的解释和仿真。 相似文献
9.
为了有效提取语音特征,提高说话人识别的准确率,系统采用基于有限状态机的端点检测算法对原始语音做VAD处理,提出了新的特征组合参数:基于人的听觉特性的MFCC参数、基于发音生理特征的基音轮廓特征以及衍生的基音周期一阶差分、基音周期变化率,并将它们作为说话人识别系统的特征参数,建立了基于VQ的识别模型.实验表明:本文系统使用VAD,使系统的识别率提高了5%8%,较单独使用MFCC参数的说话人识别系统的识别率提高了2%3%. 相似文献
10.
针对单一声学特征无法精准高效地辨识说话人身份的问题,提出了一种基于多特征I-Vector的说话人识别算法.该算法首先采集不同的声学特征并将其构成一个高维特征向量,然后通过主成分分析法有效地剔除高维特征向量的关联,确保各种特征之间正交化,最后采用概率线性判别分析进行建模和打分,并在一定程度上降低空间维度.在TIMIT语料库上利用Kaldi进行实验,算法运行结果表明,该算法较当前流行的基于I-Vector的单一梅尔频率倒谱系数和感知线性预测系数的特征系统在等错误率上分别提高了8.18%和1.71%,在模型训练时间上分别减少了60.4%和47.5%,具有更好的识别效果和效率. 相似文献
11.
基于人耳听觉特性提出一种新的抗噪音识别特征:加权组合过零峰值幅度特征,是对过零峰值幅度特征的一种改进。加权组合过零峰值幅度特征以语音数据和差分语音数据作为处理对象,通过计算它们的上升过零率获得频率信息,经幅度非线性压缩获得密度信息,并根据人耳对声音的感知特点对其进行加权,形成最终的输出特征,识别网络使用HMM。仿真实现了使用新特征与原特征的算法识别结果,证明了新特征具有较高的识别率和优良的抗噪性能。 相似文献
12.
针对单一声学特征和k-means算法在说话人聚类技术中的局限性,为了更好地表达说话人的个性信息并提高说话人聚类的准确率,将特征融合和AE-SOM神经网络应用于说话人聚类中,提出一种改进的说话人聚类算法.该算法通过对语音信号特征分析,将MFCC特征参数和LPCC特征参数相结合,从而完善说话人的个性信息.并在k-means... 相似文献
13.
基于修正MFCC参数汉语耳语音的话者识别 总被引:12,自引:1,他引:12
耳语音的话者识别是一个较新的研究课题,许多参数模型与正常音存在差异.例如话者识别中常见的M el倒谱系数(MFCC)应用于耳语音中就存在共振峰和听觉敏感区域定位的偏差.基于对耳语音共振峰位置、能量以及人耳对耳语音听觉模型的研究提出了修正MFCC参数MFCCM和MFCCExp-Log,并结合两种参数的特点,改进了传统隐马尔可夫模型,建立了适用于耳语音的汉语话者识别系统.通过1 600个音的话者识别实验得出采用MFCCM的正确率为88.88%;MFCCExp-Log参数为91.38%;如果采用改进隐马尔可夫模型正确率可以提高到92.31%,均高于传统参数模型.实验表明,修正MFCC参数可以作为表征耳语音特点的参数,它提高了耳语音话者识别系统的识别率. 相似文献
14.
把小波理论应用于抗噪语音识别特征提取,提出了基于高斯小波滤波器的语音识别特征提取方法,通过对人耳听觉特性的研究,按照人耳临界带宽设计了一组高斯小波带通滤波器。详细讨论了高斯小波滤波器的尺度参数选择方法。使用RBF识别网络,仿真实现了使用新特征与原特征的识别结果,证明了新特征具有较高的识别率和优良的抗噪性能。 相似文献
15.
一种基于听觉模型的抗噪语音识别特征提取方法 总被引:5,自引:2,他引:5
提出了一种新的语音识别特征提取方法。该方法是建立在听觉模型的基础上,通过计算语音的上升过零率作为频率信息并通过非线性幅度加权相结合来获取语音特征。仿真实现了中小词汇量、孤立词的语音识别,得到了较好的实验结果,证明了此方法具有较强的抗噪声性能。 相似文献
16.
张歆奕 《五邑大学学报(自然科学版)》2005,19(1):10-16
介绍了指数展开分类器,引出了NAPS核函数及核映射的概念.详细讨论了如何利用基于NAPS核函数的支持矢量机进行说话人识别的算法.理论和实验表明,算法具有模型参数小、识别速度快和识别率较高的优点. 相似文献
17.
说话人识别的参量研究和语音库建设 总被引:4,自引:0,他引:4
本文对说话人识别中的几个基本问题进行了研究。语音参量是说话人识别的基础,用矢量量化方法,使用自建的语音库中的材料,研究了说话人识别中的各种参量的效果。实验表明,所采用的参量中,一种混合参量MC最好,倒谱系数CE次之。 相似文献