首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 993 毫秒
1.
K Falk  O R?tzschke  H G Rammensee 《Nature》1990,348(6298):248-251
Major histocompatibility complex (MHC) class I molecules present peptides derived from cellular proteins to cytotoxic T lymphocytes (CTLs), which check these peptides for abnormal features. How such peptides arise in the cell is not known. Here we show that the MHC molecules themselves are substantially involved in determining which peptides occur intracellularly: normal mouse spleen cells identical at all genes but MHC class I express different patterns of peptides derived from cellular non-MHC proteins. We suggest several models to explain this influence of MHC class I molecules on cellular peptide composition.  相似文献   

2.
Sequence analysis of peptides bound to MHC class II molecules.   总被引:38,自引:0,他引:38  
CD4 T cells recognize peptide fragments of foreign proteins bound to self class II molecules of the major histocompatibility complex (MHC). Naturally processed peptide fragments bound to MHC class II molecules are peptides of 13-17 amino acids which appear to be precessively truncated from the carboxy terminus, perhaps after binding to the MHC class II molecule. The finding of predominant self peptides has interesting implications for antigen processing and self-non-self discrimination.  相似文献   

3.
Empty MHC class I molecules come out in the cold   总被引:43,自引:0,他引:43  
Major histocompatibility complex (MHC) class I molecules present antigen by transporting peptides from intracellularly degraded proteins to the cell surface for scrutiny by cytotoxic T cells. Recent work suggests that peptide binding may be required for efficient assembly and intracellular transport of MHC class I molecules, but it is not clear whether class I molecules can ever assemble in the absence of peptide. We report here that culture of the murine lymphoma mutant cell line RMA-S at reduced temperature (19-33 degrees C) promotes assembly, and results in a high level of cell surface expression of H-2/beta 2-microglobulin complexes that do not present endogenous antigens, and are labile at 37 degrees C. They can be stabilized at 37 degrees C by exposure to specific peptides known to interact with H-2Kb or Db. Our findings suggest that, in the absence of peptides, class I molecules can assemble but are unstable at body temperature. The induction of such molecules at reduced temperature opens new ways to analyse the nature of MHC class I peptide interactions at the cell surface.  相似文献   

4.
P A Roche  P Cresswell 《Nature》1990,345(6276):615-618
Class II major histocompatibility complex (MHC) molecules are heterodimeric cell surface glycoproteins which bind and present immunogenic peptides to T lymphocytes. Such peptides are normally derived from protein antigens internalized and proteolytically degraded by the antigen-presenting cell. Class I MHC molecules also bind immunogenic peptides, but these are derived from proteins synthesized within the target cell. Whereas class I molecules seem to bind peptides in the endoplasmic reticulum, class II molecules are thought to bind peptides late in transport. Intracellular class II molecules associate in the endoplasmic reticulum with a third glycoprotein, the invariant (I) chain, which is proteolytically removed before cell surface expression of the alpha beta class II heterodimer. It has been suggested that the I chain prevents peptides from associating with class II molecules early in transport. Preventing such binding until the class II molecules enter an endosomal compartment could maintain the functional dichotomy between class I and class II MHC molecules. We have examined the ability of I chain-associated HLA-DR5 molecules to bind a well characterized influenza haemagglutinin-derived peptide (HAp). The results show that whereas mature HLA-DR alpha beta dimers effectively bind this peptide, the I chain-associated form does not.  相似文献   

5.
Self peptides bound to self major histocompatibility complex (MHC) molecules have been implicated both in positive and in negative selection of T cells during intrathymic development. We report here that the novel MHC-restricted monoclonal antibody Y-Ae detects the MHC class II bound form of a major self peptide. Y-Ae binds approximately 12% of the relevant MHC class II molecules on self antigen presenting cells. The peptide detected by Y-Ae is one of several major peptides eluted from the MHC molecule. These data suggest that self peptides presented by self MHC class II molecules at densities sufficient to signal a CD4 T cell are of very limited complexity. Furthermore, as Y-Ae stains antigen presenting cells that mediate negative selection but not thymic cortical epithelial cells that drive positive selection, differential expression of self peptide:self MHC class II complexes may be a key feature of intrathymic selection.  相似文献   

6.
Serwold T  Gonzalez F  Kim J  Jacob R  Shastri N 《Nature》2002,419(6906):480-483
The ability of killer T cells carrying the CD8 antigen to detect tumours or intracellular pathogens requires an extensive display of antigenic peptides by major histocompatibility complex (MHC) class I molecules on the surface of potential target cells. These peptides are derived from almost all intracellular proteins and reveal the presence of foreign pathogens and mutations. How cells produce thousands of distinct peptides cleaved to the precise lengths required for binding different MHC class I molecules remains unknown. The peptides are cleaved from endogenously synthesized proteins by the proteasome in the cytoplasm and then trimmed by an unknown aminopeptidase in the endoplasmic reticulum (ER). Here we identify ERAAP, the aminopeptidase associated with antigen processing in the ER. ERAAP has a broad substrate specificity, and its expression is strongly upregulated by interferon-gamma. Reducing the expression of ERAAP through RNA interference prevents the trimming of peptides for MHC class I molecules in the ER and greatly reduces the expression of MHC class I molecules on the cell surface. Thus, ERAAP is the missing link between the products of cytosolic processing and the final peptides presented by MHC class I molecules on the cell surface.  相似文献   

7.
Sigal LJ  Crotty S  Andino R  Rock KL 《Nature》1999,398(6722):77-80
Cytotoxic T lymphocytes (CTLs) are thought to detect viral infections by monitoring the surface of all cells for the presence of viral peptides bound to major histocompatibility complex (MHC) class I molecules. In most cells, peptides presented by MHC class I molecules are derived exclusively from proteins synthesized by the antigen-bearing cells. Macrophages and dendritic cells also have an alternative MHC class I pathway that can present peptides derived from extracellular antigens; however, the physiological role of this process is unclear. Here we show that virally infected non-haematopoietic cells are unable to stimulate primary CTL-mediated immunity directly. Instead, bone-marrow-derived cells are required as antigen-presenting cells (APCs) to initiate anti-viral CTL responses. In these APCs, the alternative (exogenous) MHC class I pathway is the obligatory mechanism for the initiation of CTL responses to viruses that infect only non-haematopoietic cells.  相似文献   

8.
T Spies  M Bresnahan  S Bahram  D Arnold  G Blanck  E Mellins  D Pious  R DeMars 《Nature》1990,348(6303):744-747
Major histocompatibility complex (MHC) class I molecules export peptides to the cell surface for surveillance by cytotoxic T lymphocytes. Intracellular peptide binding is critical for the proper assembly and transport of class I molecules. This mechanism is impaired as a result of a non-functional peptide supply factor gene (PSF) in several human mutant cell lines with genomic lesions in the MHC. We have now identified PSF in the MHC class II region by deletion mapping in mutants and chromosome-walking. PSF is homologous to mammalian and bacterial ATP-dependent transport proteins, suggesting that it operates in the intracellular transport of peptides.  相似文献   

9.
J Trowsdale  I Hanson  I Mockridge  S Beck  A Townsend  A Kelly 《Nature》1990,348(6303):741-744
Class I molecules of the major histocompatibility complex (MHC) bind and present peptides derived from the degradation of intracellular, often cytoplasmic, proteins, whereas class II molecules usually present proteins from the extracellular environment. It is not known how peptides derived from cytoplasmic proteins cross a membrane before presentation at the cell surface. But certain mutations in the MHC can prevent presentation of antigens with class I molecules. In addition, mutations possibly in the MHC can affect presentation by class II molecules. Here we report the finding of a new gene in the MHC that might have a role in antigen presentation and which is related to the ABC (ATP-binding cassette) superfamily of transporters. This superfamily includes the human multidrug-resistance protein, and a series of transporters from bacteria and eukaryotic cells capable of transporting a range of substrates, including peptides.  相似文献   

10.
T cells recognize foreign protein antigens in the form of peptide fragments bound tightly to the outer aspect of molecules encoded by the major histocompatibility complex (MHC). Most of the amino-acid differences that distinguish MHC allelic variants line the peptide-binding cleft, and different allelic forms of MHC molecules bind distinct peptides. It has been demonstrated that peptide-binding to MHC class I involves anchor residues in certain positions and that antigenic peptides associated with MHC class I exhibit allele-specific structural motifs. We have previously reported an analysis of MHC class II-associated peptide sequences. Here we extend this analysis and show that certain amino-acid residues occur at particular positions in the sequence of peptides binding to a given MHC class II molecule. These sequence motifs require the amino terminus to be shifted one or two positions to obtain alignment; such shifts occur naturally for a single peptide sequence without qualitatively altering CD4 T-cell recognition.  相似文献   

11.
L Adorini  E Appella  G Doria  F Cardinaux  Z A Nagy 《Nature》1989,342(6251):800-803
T cells recognize foreign proteins as peptides bound to self molecules encoded by the major histocompatibility complex (MHC). The kinetics of interaction between purified class II MHC molecules and peptides is unusual, in that the rate of association is very slow, but once formed, the complexes are extremely stable. This raises the question of how the antigen-presenting cell provides a sufficient number of free MHC binding sites to ensure T cell immunity. We present results suggesting that an exchange of peptide in MHC binding sites may take place under physiological conditions.  相似文献   

12.
M G Brown  J Driscoll  J J Monaco 《Nature》1991,353(6342):355-357
Major histocompatibility complex (MHC) class I molecules associate with peptides derived from endogenously synthesized antigens. Cytotoxic T-lymphocytes can thus scan class I molecules and bound peptide on the surface of cells for foreign antigenic determinants. Recent evidence demonstrates that the products of trans-acting, non-class I genes in the class II region of the MHC are required in the class I antigen-processing pathway. There are genes (called HAM1 and HAM2 in the mouse) in this region that encode proteins postulated to be involved in the transport of peptide fragments into the endoplasmic reticulum for association with newly synthesized class I molecules. But, the mechanism by which such peptide fragments are produced remains a mystery. At least two genes encoding subunits of the low-molecular mass polypeptide (LMP) complex are tightly linked to the HAM1 and HAM2 genes. We show that the LMP complex is closely related to the proteasome (multicatalytic proteinase complex), an intracellular protein complex that has multiple proteolytic activities. We speculate that the LMP complex may have a role in MHC class I antigen processing, and therefore that the MHC contains a cluster of genes required for distinct functions in the antigen processing pathway.  相似文献   

13.
HLA-A2 peptides can regulate cytolysis by human allogeneic T lymphocytes   总被引:3,自引:0,他引:3  
The class-I and class-II molecules encoded by the major histocompatibility complex (MHC) are homologous proteins which allow cytotoxic and helper T cells to recognize foreign antigens. Recent studies have shown that the form of the antigen recognized by T cells is generally not a native protein but rather a short peptide fragment and that class-II molecules specifically bind antigenic peptides. Furthermore, the three-dimensional structure of the human MHC class-I molecule, HLA-A2, is consistent with a peptide-binding function for MHC class-I molecules. An outstanding question concerns the molecular nature and involvement of MHC-bound peptides in antigens recognized by alloreactive T cells. In this study the effects of peptides derived from HLA-A2 on cytolysis of alloreactive cytotoxic T cells (TC) cells are presented. Peptides can inhibit lysis by binding to the T cell or sensitize to lysis by binding an HLA-A2-related class-I molecule (HLA-Aw69) on the target cell. Thus, allospecific TC cells can recognize HLA-derived peptides in the context of the MHC.  相似文献   

14.
Peptide-dependent recognition of H-2Kb by alloreactive cytotoxic T lymphocytes   总被引:10,自引:0,他引:10  
W R Heath  M E Hurd  F R Carbone  L A Sherman 《Nature》1989,341(6244):749-752
Antigen-specific T lymphocytes appear to recognize foreign antigens in the form of peptide fragments presented within the antigen-binding groove of class I or class II molecules encoded by the major histocompatibility complex (MHC). Alloreactive T cells also show specificity for MHC molecules, and various reports suggest that residues of the MHC molecules constitute at least part of the ligand to which alloreactive T-cell receptors bind. The X-ray crystal structure of the human MHC class I molecule, HLA-A2, has provided evidence to strengthen the argument that MHC-bound self-peptide might also contribute to such recognition. We now provide direct evidence for this, showing that at least some alloreactive cytotoxic T lymphocyte clones recognize peptide fragments derived from cytoplasmic proteins. We reasoned that if self-peptides were involved in allorecognition, then the sequence of some of these peptides could vary between species, resulting in species-restricted distribution of the relevant ligand(s). Several alloreactive cytotoxic T lymphocyte clones specific for H-2Kb, expressed by the murine cell line EL4, did not lyse a human-cell transfectant expressing the H-2Kb molecule (Jurkat-Kb cells). However, these clones were able to lyse Jurkat-Kb cells sensitized by preincubation with an EL4 cytoplasmic extract cleaved by cyanogen bromide. The sensitizing activity from this extract was destroyed by protease and appeared to be due to a peptide consisting of 10 to 15 amino acids.  相似文献   

15.
A Lanzavecchia  P A Reid  C Watts 《Nature》1992,357(6375):249-252
Functional, morphological and biochemical evidence indicates that class II major histocompatibility complex (MHC) molecules associate with processed peptides during biosynthesis. Peptide/MHC complexes in living cells have been reported to be less stable than similar complexes generated in vitro, which has led to the suggestion that there may be a peptide exchange mechanism operating in vivo. Although this could increase the capacity for binding incoming antigens, it would reduce the efficacy of processed antigenic peptides by exchanging these for self peptides. Here we measure the half-life of peptide/class II complexes in human antigen-presenting cells and find that it is very similar to the half-life of class II molecules themselves, indicating that peptides are bound irreversibly under physiological conditions. Thus class II MHC retains long-term 'memory' of past encounters with antigen to maximize the opportunity for T cell/antigen-presenting cell interaction.  相似文献   

16.
We describe a mutant human cell line (LBL 721.174) that has lost a function required for presentation of intracellular viral antigens with class I molecules of the major histocompatibility complex (MHC), but retains the capacity to present defined epitopes as extracellular peptides. The cell also has a defect in the assembly and expression of class I MHC molecules, which we show can be restored by exposure of the cells to a peptide epitope. This phenotype suggests a defect in the association of intracellular antigen with class I molecules similar to that described for the murine mutant RMA-S (ref. 5), but in the present case the genetic defect can be mapped within the MHC locus on human chromosome 6.  相似文献   

17.
C V Harding  E R Unanue 《Nature》1990,346(6284):574-576
The number of specific complexes formed between peptide and the class II major histocompatibility complex (MHC) molecules expressed by an antigen-presenting cell (APC) after exposure to protein antigens is unknown, as is the number that activates T cells. Presentation of foreign peptides by APC takes place when many class II molecules may be occupied by autologous peptides. We have now estimated the number of specific peptide/class II complexes per APC by quantitative immunoprecipitation of I-Ak after pulsing the APC with stimulatory levels of a radioactive immunogenic peptide derived from hen egg-white lysozyme protein. T cells were activated by APC that expressed as few as 210-340 specific peptide/class II complexes (0.1% of the I-Ak molecules). These figures were confirmed using anti-CD3 antibody bound to latex beads as an alternative activating ligand. This low number explains the simultaneous presentation of multiple foreign antigens, even in the face of peptide competition.  相似文献   

18.
Cytotoxic and helper T lymphocytes recognize foreign antigen in the form of short peptides associated with class I and class II major histocompatibility complex (MHC) molecules, respectively. A recent study of the three-dimensional structure of a class I MHC molecule revealed a cleft formed by the amino-terminal half of the protein, which could serve as the binding site for these peptides. Because an individual possesses only a limited set of different MHC molecules, each molecule of this set must have the ability to bind a large number of different peptides in order to ensure full immunocompetence. Thus, it can be anticipated that peptides with unrelated sequences compete for binding to the same MHC molecule, and, indeed, this has been shown to occur in vitro. We therefore decided to see whether such competition could also regulate the cell responses in vivo. We have found that a synthetic peptide corresponding to residues 46-62 of mouse lysozyme, although not immunogenic itself, effectively inhibits the priming for T-cell responses when injected into mice together with foreign protein or peptide antigens. The inhibition observed strictly correlates with the capacity of the competitor to bind to the particular MHC molecule presenting the foreign antigen, and its extent depends on the molar ratio between antigen and competitor.  相似文献   

19.
S Kvist  U Hamann 《Nature》1990,348(6300):446-448
Most cytotoxic T lymphocytes (CTL) recognize epitopes of foreign viral proteins in association with class I major histocompatibility complex (MHC) molecules. Viral proteins synthesized in the cytoplasm require intracellular fragmentation and exposure to the class I antigens for the development of CTL responses. Although indirect evidence for binding of peptides to class I antigens has accumulated, direct binding has only been shown recently. The formation of complexes between peptide and class I antigen may occur in the endoplasmic reticulum (ER) and peptides have been shown to induce assembly of the class I complex. We have translated the messenger RNAs encoding HLA-B27 (subtype 2705) and beta 2-microglobulin in a rabbit reticulocyte lysate supplemented with human microsomal membranes (to mimic ER membranes), in the absence and presence of a peptide derived from the nucleoprotein (residues 384-394) of influenza A virus. This peptide induces CTL activity against target cells expressing the HLA-B27 antigen. Here we report direct evidence that the nucleoprotein peptide promotes assembly of the HLA-B27 heavy chain and beta 2-microglobulin, and that this can occur in the ER immediately after synthesis of the two proteins.  相似文献   

20.
H Bodmer  G Ogg  F Gotch  A McMichael 《Nature》1989,342(6248):443-446
Most cytotoxic T lymphocytes (CTL) not only recognize epitopes of viral or other foreign proteins in association with class I major histocompatibility complex (MHC) molecules, but also recognize target cells sensitized with short synthetic peptides representing the epitopes. There is increasing evidence that these synthetic peptides associate with the class I molecule both at the cell surface and intracellularly. We have now investigated the effect of a monoclonal antibody specific for HLA-A2 and HLA-B17 (B57/58) molecules (antibody MA2.1)3 on the sensitization of target cells with peptide for lysis by HLA-A2-restricted CTL. Previously, anti-HLA class I monoclonal antibodies have been shown to inhibit the recognition of target cells, infected with influenza A virus, by virus-specific CTL. We find, however, that target cells treated with MA2.1 antibody can be sensitized with peptide for CTL lysis much more rapidly than untreated cells, or at greater than 100-fold lower peptide concentration than that required for sensitization of untreated cells. This implies that the antibody, which is believed to bind to one side of the peptide-binding groove, directly affects the binding of peptide to the HLA-A2 molecule at the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号