首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
应用放大moire倍增和动态moire技术对软钢平面应力I型裂纹试件进行实验,得到以下主要结果,取到裂纹线弹性皮.小范围屈服,大范围屈服段,裂纹起裂,稳态扩展,稳恒扩展,失稳扩展段的裂纹尖端位移场和应变场。给出了裂纹扩展量△a与应变尺寸R(ε)的关系曲线。给出裂纹扩展过程中张开角COA的变化。对裂纹张开位移COD与σ/σs的曲线在较小范围屈服条件下与Wells计算结果进行了比较。对~ε0/εs曲线进行了讨论。  相似文献   

2.
分析了韧性金属颗粒增韧陶瓷复合材料的残余应力对增韧的影响,指出残余应力的存在提高了金属颗粒作用于裂纹表面的桥联应力,对增韧有一定的贡献.运用Eshelby方法导出了两相复合材料残余应力的理论计算式,为该类材料的增韧设计提供了思路.  相似文献   

3.
在考虑与裂纹面位移成正比的桥联力影响下,对无限大纤维增强复合材料中半无限长反平面裂纹的动态传播进行了讨论.利用Fourier变换,问题简化成一个方程,利用Wiener-Hopf技术进行了求解.得到的应力强度因子可以表达成一个速度修正因子与静态应力强度因子乘积的形式.结论有:(1)由材料性能决定的音速是裂纹传播速度的上限;(2)桥联纤维在增韧复合材料和组织裂纹扩展中起了关键作用;(3)受桥联纤维力作用的半无限长裂纹在无限域中扩展等效于半无限长裂纹在带域中扩展.  相似文献   

4.
对目前常用的两种R-曲线表达式进行了详细的分析,讨论了它们的适应范围。根据R-曲线的指数形式,得出了增韧效果与基体的初始韧性值有关,并与增韧区的长度与裂纹的长度之比成正比的结论。  相似文献   

5.
本文讨论了含裂纹不同介质弹性材料有限板焊接的混合问题.在裂纹上给出外荷载,在外边界上给出相对位移,得到了寻求复应力函数和计算应力强度因子的方法.  相似文献   

6.
本文应用Westergaard应力函数,导出应力分量与位移分量的精确解。再根据八面体剪应力屈服条件分析塑性区,同时考虑到应力松弛的影响,把裂纹延长到塑性区,然后按弹性场进行计算应力分量与位移分量。文中最后讨论了Ⅰ、Ⅱ、Ⅲ型裂纹的张开位移、滑开位移和撕开位移。  相似文献   

7.
金瓷修复体双材料界面断裂强度有限元分析   总被引:3,自引:0,他引:3  
建立金瓷修复体双材料界面裂纹扩展的有限元计算模型.首先利用有限元计算得到平面应力条件下裂纹尖端位移场,求出裂尖附近复应力强度因子主导区域内对应点的相对位移,再辅以传统计算方法得到衡量双材料抵抗断裂能力的复应力强度因子K,并利用双材料界面断裂有关理论和基本公式,求得相关的断裂力学参量,对计算结果进行了实验验证.分析表明,金瓷层厚比对金瓷裂纹开裂具有很大的影响,为进一步分析和研究金瓷修复体断裂行为提供了研究方法。  相似文献   

8.
在分析了线弹性材料裂纹前缘应力场与混凝土材料裂纹尖端应力场之间关系的基础上,提出描述混凝土裂纹前缘微裂区应力卸载曲线的折线应力分布模型,并据此导出描述上述两应力场之间联系的场关系方程.这一模型为寻求混凝土裂尖应力场、位移场的解析解奠定了基础.  相似文献   

9.
利用维氏压痕/抗弯强度法对3Y-PSZ单体和3Y-PSZ/20%Al2O3复合陶瓷的裂纹扩展曲线进行了测试。结果表明,与裂纹扩展初期引比,Al2O3颗粒的弥散增韧效果随着裂纹的扩展而明显上升,除裂纹偏向以外,Al2O3弥散颗粒是通过架桥和拔出等方式来进一步提高3Y-PSZ陶瓷的断裂韧性的。  相似文献   

10.
针对含裂纹的弹塑性材料结构,根据弹塑性断裂理论分析了裂纹增长的条件.建立了基于裂纹尖端存在塑性区的计算模型,得到了描述含裂纹弹塑性材料在外荷载作用下的塑性区尺寸及塑性区前端裂纹张开位移的解析解.按照所建立的计算模型对不同的裂纹长度、不同的外荷载对塑性区尺寸及张开位移的影响进行探讨.并给出了材料在外荷载作用下破坏的临界应力强度因子曲线.  相似文献   

11.
建立了土拱效应分析的三维弹塑性有限元模型,采用数值模拟方法研究了桩承式加筋路堤的荷载传递机理。计算结果表明,路堤底部加筋增强了路堤荷载向桩帽上转移的能力。影响路堤荷载向桩帽上转移主要是土拱效应,其次是加筋的拉膜效应。土拱效应与路堤加筋与否关系不大。加筋拉膜效应在土拱效应发挥后开始发挥,桩帽边缘处底部加筋的拉应力最大。加筋拉膜效应随着加筋刚度和桩间距的增加而增大,随着加筋位置的升高而减小。与底部加筋的桩承式路堤相比,对于给定的桩帽-土差异沉降,双层加筋桩承式路堤中加筋的拉膜效应增大,第一层加筋的拉应力减小。第二层加筋铺设位置越高,其拉应力越小,最大拉应力点向桩帽中心方向移动。  相似文献   

12.
粘贴钢板是结构加固的重要方法之一,本通过两组加固试验梁的研究,探讨了粘贴钢板长度L.对梁承载力及破坏的影响,通过加固梁端部应力状态分析及破坏形态,明确了加固梁弯剪破坏原因,为工程加固设计提供依据.  相似文献   

13.
对高填方下台阶式加筋土挡墙筋带应力进行了现场实测研究分析.发现筋带上应力的分布情况分为3种,其一:筋带上全部分布着拉应力,其二:筋带上全部分布着压应力,其三:筋带上既分布着拉应力,又分布着压应力,这些和通常的加筋土挡墙所测的结果不同.究其原因主要是该实体工程的筋带为钢筋混凝土串联块,属非柔性材料,而一般加筋土挡墙的筋带为柔性材料,但是同样可以用筋带上的最大应力所在位置确定墙后填土的潜在破裂面线.  相似文献   

14.
本文从中厚板弯曲基本理论出发,进一步论证了挤压变形函数的分布规律,给出挤压变形函数及简化表达式,将所得挤压应力分布规律(繁式与简式)与弹性理论中所得挤压应力值进行了比较,结果非常接近。  相似文献   

15.
伴随着网络科技与电子商务的发展,历经了十年发展的在线纠纷解决机制的发展阶段与分布国家、提供的内容、处理争议的类型及其效果、运作经费的来源等诸多方面的现状值得认真梳理。对于ODR的回顾,让我们看到其在纠纷解决中的低成本、便捷性以及在回避管辖权等方面取得的较大成就,同时,我们也注意到ODR目前存在的安全性、保密性、身份认证及在线仲裁裁决中的执行等问题。随着全球电子商务的飞速发展以及各国政府及国际组织的高度重视,ODR作为一种新型的纠纷解决机制有着美好的发展前景。  相似文献   

16.
通过对锦屏二级水电站辅助交通洞的绿片岩单轴压缩蠕变特性试验,研究了轴向荷载方向与层理之间的不同关系对瞬时应变、应力应变关系、轴向应变速率、衰减蠕变持续时间和蠕变破坏机理的影响.研究结果表明:在相同低应力水平下,垂直于层理时的瞬时应变增量大于平行于层理时的瞬时应变增量,而在相同较高应力水平下垂直于层理时的瞬时应变增量小于平行于层理时的瞬时应变增量;同等应力水平条件下,垂直于层理时的轴向应变速率和衰减蠕变持续时间均小于平行于层理时的轴向应变速率和衰减蠕变持续时间.同时,当轴向荷载垂直或者平行于层理时,应力应变关系曲线均出现了压密、弹性变形、裂纹扩展和峰后破坏阶段,且蠕变破坏类型均属于脆性破坏.  相似文献   

17.
利用扫描电子显微镜(SEM)对不同纤维方位角的玻纤增强树脂复合材料(GFRP)在单拉载荷下的破坏过程进行了实时观测.在桥联模型基础上,将纤维剪应力和基体正应力定义为界面的应力状态,对概化的GFRP材料单元进行了定量分析,得到了单拉载荷下纤维体积分数为27.5%的单元起裂时的应力状态,并通过最大应力强度准则确定了导致起裂的应力分量.综合SEM图片中裂纹形态和断口形貌,分析了不同纤维方位角的GFRP材料裂纹萌生和裂纹扩展的机理.分析结果表明,随着纤维方位角增大,导致GFRP材料裂纹萌生的应力分量由基体最大主应力演化为界面剪应力;裂纹扩展路径由最大主应力控制的基体开裂演化为最大剪应力控制的界面开裂.  相似文献   

18.
采用弹性地基板理论和非线性梁理论分别建立弃置回收作业中深水管道触底段和悬跨段几何大变形管道模型。以悬链线理论对管道进行初始构形,将DnV规范与土样调查数据相结合处理触底段管道和海床地基的边界条件,得到垂向、侧向、轴向3个方向的土壤反力公式。以某深水气田管道为研究对象,采用有限元软件ABAQUS进行初选管道提升角的有限元分析,得到管道的应力分布。结果表明:提升角增大,管线提升端的轴向拉力减小、最大应力位置从提升点向触地点转移。当提升角处于合理范围时,管道应力水平较低,提升端轴向力相对于AR绞车能力比较合理。顺流时轴向拉力最大,AR绞车负载较大;逆流时管道轴向拉力最小。管线等效应力主要取决于弯曲应力。来流方向对管道触地点等效应力的影响非常大,应避免逆流环境作业。  相似文献   

19.
差异沉降下加筋土挡土墙筋带变形特性试验研究   总被引:2,自引:0,他引:2  
将正交试验方法应用于加筋土挡土墙的缩尺模型试验,采用4组试验模拟墙后填土与墙面板之间存在差异沉降的挡墙工作状态,量测了各级差异沉降下的筋带变形.通过对筋带延伸率、筋带密度、筋带与面板连接方式3个因素的二水平试验结果的分析,提出差异沉降下筋带变形可以用指数曲线描述,并对试验现象加以分析.图5,表4,参9.  相似文献   

20.
用GYH-2型单膜式压力传感器和GJL-2型钢筋计测试了一种被称为“构造板扩展基础”的新型基础基底反力及内力,掌握了第一手动态监测数据,总结出该种基础基底压力的分布规律和基础内力的实际状态.测试结果表明,构造底板能承担30%左右的上部荷载,钢筋受力处于交变应力状态,最大拉应力出现在柱上板带跨中处,应力最大值不超过钢筋设计强度的22%.这一结论可为构造板独立基础的设计提供直接参考依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号