首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
吴娜  刘丽娟 《科技信息》2012,(28):388-388,390
本文利用了超音速火焰喷涂技术制备了高硬质合金密封节能半球阀,研究了经该工艺处理后阀门密封面的硬度及使用寿命,发现经过喷涂WC处理的阀门,抗冲蚀能力更强,使用寿命是采用基体材料阀门的39倍.是喷涂Ni60材料阀门的15倍。  相似文献   

2.
本文研究了铜对WC—Co和WC—Ni合金的影响。 研究表明:WC—Co合金中添加铜可以有效地提高合金的抗弯强度和冲击韧性。WC—15%Co合金中,添加0.5%Cu(重量)时,合金的抗弯强度较WC-15%Co合金提高10%以上。试验得出,WC—15%Co合金的冲击韧性随含铜量的增加而提高,铜添加量为1%(重量)时达最大值,较WC—15%Co合金提高15%。研究指出:WC—Co合金中加入铜后,能细化合金的碳化物晶粒。 研究表明:在WC—8%Ni合金中添加少量铜,可以明显提高合金的抗弯强度而合金硬度降低不大。添加量为1.3%Cu时,抗弯强度达最大值,较WC—8%Ni合金提高25%。研究结果还表明,在WC—8%Ni合金中,随含铜量的增加,合金晶粒渐趋均匀并细化。 试验得出:WC—8%Ni—Cu合金具有良好的耐酸耐蚀性。 研究结果还表明:在WC—Co和WC—Ni中添加铜后,不仅能提高合金性能,而且还能降低产品的成本。  相似文献   

3.
硬质合金的断裂韧性测试难度大,在国际上方法各异,并在不断改进。经过三年努力,研究出火花切割单边缺口梁三点弯曲试验法、静载压缩预裂纹法、表面裂纹(或缺陷)法。三种硬质合金断裂韧性试验方法,查明了WC—Co系合金断裂韧性KIC与其成份、组织结构参数及其他力学性能之间的关系。用扫描电镜、声发射技术和能谱分析研究了硬质合金的断裂过程,发现WC—Co系合金断裂的微观原因是WC/WC型晶界开裂和WC的解理断裂并且以前者为主,WC/C。交界处是影响合金韧性的主要薄弱环节,在这些交界处偏集有Mg、Si、S杂质,提出了与实验结果相吻合的断裂模型。另外在硬质合金冲击性能研究方面也获得重大突破,已研制出YD—6型小能多冲试验机,并用此机及改装的  相似文献   

4.
以WC涂层在飞机起落架的应用作为研究背景,对300 M超高强钢基体上电镀硬铬和超音速火焰喷涂WC-17Co和WC-10Co4Cr涂层的疲劳及与Al—Ni—Bronze合金的摩擦磨损性能进行了研究。结果表明,有WC涂层300 M钢的疲劳寿命与无涂层300 M钢的疲劳极限和过载下的疲劳寿命相当,WC涂层对300 M钢的疲劳寿命不会产生不良影响;而电镀硬铬使300 M钢的疲劳极限降低120 MPa,疲劳寿命则降低70 %~90 %。疲劳失效分析表明, WC涂层中的疲劳裂纹在界面上发生偏斜,转向沿界面扩展,因此对基体的疲劳寿命没有影响;而电镀硬铬中的的疲劳裂纹扩展到基体表面,显著降低基体的疲劳寿命。10#航空液压油润滑下涂层与Al—Ni—Bronze合金的摩擦磨损表明,与电镀硬铬对磨时,Al—Ni—Bronze合金发生明显的磨损,同时因质量转移而导致电镀硬铬的质量显著增加;而WC涂层仅略有失重,相应地Al—Ni—Bronze合金的失重仅为与电镀硬铬层磨损失重的1/50~1/100。WC涂层与Al—Ni—Bronze合金的磨损机理主要为磨粒磨损;电镀硬铬与Al—Ni—Bronze合金的磨损机理主要为黏着磨损。  相似文献   

5.
高能球磨-热压烧结制备定向排布板状WC硬质合金   总被引:3,自引:0,他引:3  
采用高能球磨辅助特殊的热压烧结工艺制取定向排布板状WC硬质合金,研究了烧结温度和球磨时间对板状WC晶粒形成及其定向排布的影响.研究结果表明:烧结温度越高,越有利于晶粒粗化,形成大块板状WC晶粒;高能球磨中引入的缺陷是促进WC晶粒长径比提高的主要原因;WC晶粒的均匀性、粒径和长径比是影响其定向排布的主要因素.制备定向排布板状WC硬质合金是同时提高硬质合金硬度和韧性的有效方法.  相似文献   

6.
硬质合金的晶粒度和组织均匀性是制约其性能的关键因素。为了细化晶粒,改善组织,提高合金性能,采用粉末碳化、冷压烧结技术,以W、Co、Ta为原料,La_2O_3为添加剂,制备WC-11Co-2.1Ta C硬质合金,研究添加La_2O_3对硬质合金组织和力学性能的影响。结果表明:添加0.2%~0.4%La_2O_3可抑制WC-11Co-2.1Ta C硬质合金组织WC晶粒聚集生长,使组织均匀,WC相邻接度减小,WC/Co接触面积增大,提高抗弯强度;当La_2O_3添加量增加到0.6%时,合金组织偏聚,WC晶粒严重聚集生长,WC相邻接度增大,提高了硬质合金抵抗显微金刚石压头的刻入能力,增大了显微硬度。  相似文献   

7.
将75keV氮离子注入到WC—8%c_0硬质合金表面形成注入强化层,使硬质合金表面硬度和动摩擦特性均得到明显改善。用TRIM算法计算了注入后的氮离子浓度分布和辐照损伤分布。X衍射实验表明,注入后形成了间隙固溶体,析出δ—WN第二相,并使晶粒细化。因溶强化、分散强化、细晶强化是使注入后硬质合金表面性能得到改善的主要原因。  相似文献   

8.
为了减小氧化石墨烯(graphene oxide,GO)在WC-10Co硬质合金中的团聚以及高温液相烧结过程中Co对GO的溶蚀作用,通过化学镀的方式制备了改性氧化石墨烯(GO/Ni),随后利用静电吸附以及机械搅拌两种方法分别制备了WC-10Co-GO复合粉体和WC-10Co-GO/Ni复合粉体。用扫描电子显微镜(scanning electron microscope,SEM)和透射电子显微镜(transmission electron microscope,TEM)对改性后的GO以及复合粉体进行微观形貌的表征。采用气压烧结工艺制备了WC-10Co、WC-10Co-GO和WC-10Co-GO/Ni硬质合金并研究了硬质合金的物理性能和力学性能。实验结果表明:随着GO和GO/Ni的加入,硬质合金的密度和洛氏硬度有了略微的降低;对比WC-10Co硬质合金,WC-10Co-GO和WC-10Co-GO/Ni硬质合金的横向断裂强度分别提升了35.2%和59.7%,其中GO/Ni作为作为基体增强相的效果最佳。  相似文献   

9.
本文介绍耐磨性、耐热性均优的氮化硅—铁系复合材料的制造方法。 目前已付诸实用的陶瓷金属系复合材料有两类:一类是陶瓷分散型合金如Al_2O_3—Al系、ThO_2—Ni合金系等;另一类是金属陶瓷如WC—Co系、WC—TiC—Co系、TiC—Ni系、Cr_3C_2—Ni系、Al_2O_3—Cr系等。Si_3N_4—Fe系复合材料,因其主要原料氮化硅和铁在烧结中反应彻底,氮化硅陶瓷相和铁系金属相不能稳定存在,如按常规烧结冶炼,先要将Si_3N_4和Fe粉末混合、成形后,再置真空、惰性气体、H_2等氛围(为防止烧结过程中氧化和氮化)中以1150~1250℃高温烧结,按  相似文献   

10.
碳含量对纳米硬质合金组织和性能的影响   总被引:11,自引:0,他引:11  
该文研究碳含量对纳米硬质合金组织和性能的影响 .通过对添加不同碳含量合金的组织观察和机械性能比较 ,发现碳对硬质合金的 WC晶粒度、相组织和机械性能都有着极其重要的影响 .研究结果表明 ,通过控制碳的含量可以控制 WC晶粒在烧结过程中的长大 .  相似文献   

11.
为改善硬质合金中增强体碳纳米管(carbon nanotubes,CNTs)的团聚问题,采用化学镀Ni方法对CNTs进行表面改性,利用气压烧结工艺制备了WC-10Co-CNTs硬质合金和WC-10Co-CNTs/Ni硬质合金。对镀Ni前后CNTs的表面形貌、结构及成分进行了分析表征,并研究了CNTs和CNTs/Ni对硬质合金组织及性能的影响。结果表明,CNTs经化学镀改性处理后,表面包覆了致密的纳米Ni颗粒,团聚现象明显改善;在WC-10Co中添加CNTs或CNTs/Ni后可以有效地细化硬质合金的晶粒,降低孔隙率;和未添加的比较,添加质量分数0.1%的CNTs的硬质合金和添加质量分数0.1%的CNTs/Ni的硬质合金抗弯强度分别提高了17.5%和28.2%,热扩散系数分别提高了23.5%和42.8%。  相似文献   

12.
本文总结了机械密封比较常见的渗漏原因。机械密封本身是一种要求较高的精密部件,对设计、机械加工、装配质量都有很高的要求。在使用机械密封件时,应分析使用机械密封的各种因素,使机械密封适用于各种泵的技术要求和使用介质要求且有充分的润滑条件,这样才能保证密封长期可靠地运转。  相似文献   

13.
纯氧气氛下硬质合金及其原料的热稳定性   总被引:2,自引:0,他引:2  
采用差热分析法研究了纯氧气氛下WC粉、Co粉、RE-Co预合金粉、WC-8Co硬质合金的热稳定性以及稀土对硬质合金热稳定性的影响.研究结果表明:费氏粒度分别为0.51μm和0.93μm的WC粉和Co粉分别在392℃和282℃就开始明显氧化,由于湿磨过程的活化作用与破碎作用,硬质合金混合料的热稳定性进一步降低,因此,在制备硬质合金混合料特别是超细硬质合金混合料的过程中对湿磨介质、混合料干燥方式与干燥温度等应进行严格选择与控制;在湿磨过程中,稀土以RE-Co预合金粉形式加入制备成含稀土的硬质合金,在混合料制备过程中RE-Co预合金粉不会发生明显氧化,其热稳定性与硬质合金基本原料WC粉和Co粉的热稳定性相当;稀土的添加量对WC-Co硬质合金的热稳定性影响不大,在合金中加入稀土不能使合金的明显氧化起始温度得到显著提高;在约700℃,WC-8Co硬质合金发生明显氧化,因此,WC-8Co硬质合金的实际使用温度应低于700℃.  相似文献   

14.
用金相一硬度法测定了WC50CrMo钢结硬质合金的TTT曲线,试验结果表明,该合金的珠光体和贝氏体转变曲线完全分离,珠光体转变温度区域为630—760℃,贝氏体转变温度区域为250—500℃,马氏体点(Ms)为250℃。  相似文献   

15.
通过对所研制的具有自愈合能力的 Ni Al+ Ni Cr+ WC,玻璃质 + Ni Cr+ WC及 Sn Al+ Ni Cr+ WC 3种高温涂层的高温耐磨性能研究表明 ,在硅酸铝和石英粉两种磨料介质中 ,3种涂层在高温条件下均有良好的保护作用和高温耐磨性能 .其中Sn Al+ Ni Cr+ WC涂层的抗磨性能好于其它几种涂层 ,其最佳使用温度为 70 0~ 80 0℃ ,转速为 5 12~ 832 r/ mi  相似文献   

16.
抑制硬质合金烧结中WC晶粒长大的研究   总被引:6,自引:0,他引:6  
该文选择了VC和Cr3C2作为WC—Co硬质合金晶粒长大抑制剂,研究两种抑制剂加入量对合金组织、WC晶粒度和性能的影响以及抑制晶粒长大的机理.研究结果表明,VC和Cr3C2的加入十分有效地抑制了基体合金WC晶粒的长大,合金中的WC晶粒度随抑制剂加入量的增加而减小,可达到最小的WC晶粒度接近100nm,合金的硬度随抑制剂加入量增加而增加,但强度则下降。同时也会增加孔隙度,结果增加了脆性,降低了合金的强度.VC的有害影响比Cr3C2更大。  相似文献   

17.
研究揭示了硬质合金热处理机理在于控制合金中钴相的固态相变、碳化物形貌及钴相中的析出物,确定了YG类硬质合金最佳淬火及回火工艺:淬火温度1250~1350℃,回火温度300~600℃,保温1~10小时,最好的淬火介质是机油,得到了性能良好的YG类热处理合金钎头,经现场使用证明比未热处理的寿命提高50~150%,φ150mm潜孔钻头寿命平均为600米/只,达到进口同类钻头水平,经初步试验证明经热处理的YW_2合金刀片,其耐用度比未热处理的提高6倍,为提高我国硬质合金质量开辟了一条新途径。 运用超过高压电镜等先进检测手段研究出添加Cr_3C_2二次抑制WC晶粒长大的机理,研制成性能优越的超细晶粒合金YS_2(YG10H);研究了矿用硬质合金球齿多冲断裂过程,发现部分WC—Co界面存在η相薄膜并阐明了其形成机理及消除方法;建立了YG11合金粘结相中WC的固溶度、体积分数和多冲寿命三者的经验公式;研究了硬质合金中  相似文献   

18.
采用板状WC单晶颗粒作为晶种制备含板状WC晶粒的WC-10%Co(质量分数)硬质合金,研究板状WC晶种的加入对WC-10%Co硬质合金显微组织和性能的影响。研究结果表明:加入板状晶种后,WC-10%Co合金中的WC晶粒具有明显的板状特征,且晶粒尺寸大于未加晶种的合金晶粒尺寸;少量晶种的加入对WC-10%Co合金密度无影响,而硬度和韧性都有所增加,特别是抗弯强度增加12.8%,断裂韧性提高46.9%。合金中WC晶粒形状的改变是硬度和韧性提高的主要因素。  相似文献   

19.
采用超音速等离子喷涂技术在45#钢表面制备不同配比的WC/12Co+Ni60A复合涂层.利用SEM、EDS、XRD等分析技术对该涂层的形貌特征、物相组成和微区成分进行分析,并对涂层硬度及耐磨性进行测试.结果表明:在Ni60A中添加WC/12Co颗粒可使涂层的硬度和耐磨性显著提高,当WC/12Co质量分数为30%时,复合涂层的耐磨性较Ni60A涂层的耐磨性提高10.4倍;WC/12Co+Ni60A复合涂层主要由WC增强颗粒、γ-Ni基体及基体上分布的Cr2B、Cr7C3、Ni3Si2、W2C等相组成.其中大部分未熔的WC颗粒弥散分布在γ-Ni基体上形成硬质点相,是提高涂层耐磨性的主要因素;同时WC颗粒的存在对γ-Ni基固溶体基体有强化作用,使得涂层耐磨性进一步提高.  相似文献   

20.
通过球磨与低压烧结方法,制备超细晶WC-Ni3Al硬质合金。采用X线衍射、扫描电镜及力学性能测试方法,研究La B6掺杂对超细晶WC-Ni3Al合金的组织与力学性影响。研究结果表明:添加适量La B6可以提高烧结体的致密度和断裂韧性,减少WC颗粒的反常长大,抑制基体合金中的脱碳相Ni3W9C4的生成,但当加入过量的La B6后合金中出现另一种脱碳相Ni2W4C。在1 500℃烧结后,添加质量分数为0.096 7%La B6到WC-Ni3Al硬质合金中,合金的断裂韧性从13.1 MPa·m1/2提高到15.6 MPa·m1/2,而抗压缩强度达到3 500 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号