首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DnaJ/Hsp40 (heat shock protein 40) proteins have been preserved throughout evolution and are important for protein translation, folding, unfolding, translocation, and degradation, primarily by stimulating the ATPase activity of chaperone proteins, Hsp70s. Because the ATP hydrolysis is essential for the activity of Hsp70s, DnaJ/Hsp40 proteins actually determine the activity of Hsp70s by stabilizing their interaction with substrate proteins. DnaJ/Hsp40 proteins all contain the J domain through which they bind to Hsp70s and can be categorized into three groups, depending on the presence of other domains. Six DnaJ homologs have been identified in Escherichia coli and 22 in Saccharomyces cerevisiae. Genome-wide analysis has revealed 41 DnaJ/Hsp40 family members (or putative members) in humans. While 34 contain the typical J domains, 7 bear partially conserved J-like domains, but are still suggested to function as DnaJ/ Hsp40 proteins. DnaJA2b, DnaJB1b, DnaJC2, DnaJC20, and DnaJC21 are named for the first time in this review; all other human DnaJ proteins were dubbed according to their gene names, e.g. DnaJA1 is the human protein named after its gene DNAJA1. This review highlights the progress in studying the domains in DnaJ/Hsp40 proteins, introduces the mechanisms by which they interact with Hsp70s, and stresses their functional diversity. Received 27 April 2006; received after revision 5 June 2006; accepted 19 July 2006  相似文献   

2.
Hsp70 chaperones: Cellular functions and molecular mechanism   总被引:36,自引:0,他引:36  
Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.Received 21 October 2004; received after revision 24 November 2004; accepted 6 December 2004  相似文献   

3.
A bi-allelic polymorphism found in the regulatory region of the human heat shock (HS) protein (HSP) hsp70-1 gene, which comprises an A-->C transversion, 3 bp upstream of the HS element (HSE), has been associated with extended HLA haplotypes. In view of the chaperoning and protective functions of Hsp70, we investigated whether this hsp70-1 bi-allelic polymorphism could modulate the stress response, which may relate to enhanced resistance or susceptibility to certain diseases. We compared the basal and HS-induced HS factor (HSF)-binding activity of the two polymorphic HSEs, hsp70-1 mRNA accumulation and HSP expression in two human Epstein Barr virus (EBV)-transformed B cell lines typed for hsp70-1 promoter alleles. Our results suggest that hsp70-1 promoter polymorphism does not influence HSF-binding activity, hsp70 mRNA accumulation or synthesis in human EBV-transformed B cell lines.  相似文献   

4.
Hsp70 is a highly conserved chaperone that in addition to providing essential cellular functions and aiding in cell survival following exposure to a variety of stresses is also a key modulator of prion propagation. Hsp70 is composed of a nucleotide-binding domain (NBD) and substrate-binding domain (SBD). The key functions of Hsp70 are tightly regulated through an allosteric communication network that coordinates ATPase activity with substrate-binding activity. How Hsp70 conformational changes relate to functional change that results in heat shock and prion-related phenotypes is poorly understood. Here, we utilised the yeast [PSI +] system, coupled with SBD-targeted mutagenesis, to investigate how allosteric changes within key structural regions of the Hsp70 SBD result in functional changes in the protein that translate to phenotypic defects in prion propagation and ability to grow at elevated temperatures. We find that variants mutated within the β6 and β7 region of the SBD are defective in prion propagation and heat-shock phenotypes, due to conformational changes within the SBD. Structural analysis of the mutants identifies a potential NBD:SBD interface and key residues that may play important roles in signal transduction between domains. As a consequence of disrupting the β6/β7 region and the SBD overall, Hsp70 exhibits a variety of functional changes including dysregulation of ATPase activity, reduction in ability to refold proteins and changes to interaction affinity with specific co-chaperones and protein substrates. Our findings relate specific structural changes in Hsp70 to specific changes in functional properties that underpin important phenotypic changes in vivo. A thorough understanding of the molecular mechanisms of Hsp70 regulation and how specific modifications result in phenotypic change is essential for the development of new drugs targeting Hsp70 for therapeutic purposes.  相似文献   

5.
Twelve cosmids containing sequences resembling genes encoding members of the 70-kDa heat-shock protein family, HSP70, have been isolated from Fugu rubripes. They can be broadly divided into three groups of overlapping cosmids. Restriction analysis and sequencing of one set of five cosmids have revealed five intronless Fugu HSP70 genes spanning 42 kb, arranged in a combined head-to-head, tail-to-tail and head-to-tail orientation. The levels of DNA and amino acid identity are very high with respect to one another, and are most similar to HSP70 sequences linked to the major histocompatibility complex (MHC) region in other species. Putative heat-shock consensus elements are identified. Non-HSP70 sequences with homology to known genes have been found physically linked to this Fugu HSP70 cluster: the Drosophila melanogaster SOL gene, the Drosophila melanogaster nemo gene, the Caenorhabditis elegans T17E9.1 gene and the sequence encoding the serine protease domain. The linkage relationships described here so far bear no resemblance to those of HSP70 in other organisms. Convergence of mammalian HSP70 and MHC class I and II loci probably occurred after fish had diverged. Received 17 November 1998; received after revision 25 February 1999; accepted 26 February 1999  相似文献   

6.
Heat shock genes are found in all organisms, and synthesis of heat shock proteins is induced by various stressors in nearly all the cells forming these organisms. However, a particular situation is noticed for hsp70 genes in mouse embryos at the beginning of their development. First, spontaneous expression of hsp70 is observed at the onset of zygotic genome activity. Second, inducible expression is delayed until morula or early blastocyst stages. A better understanding of both these points depends on a more careful analysis of hsp70 expression in relation to their major regulators, the heat shock factors. In this review, we will see how the development of the preimplanta tion embryo highlights the complexity of heat shock gene regulation involving trans-cis interactions and the cellular and nuclear environment.  相似文献   

7.
8.
In Escherichia coli protein quality control is carried out by a protein network, comprising chaperones and proteases. Central to this network are two protein families, the AAA+ and the Hsp70 family. The major Hsp70 chaperone, DnaK, efficiently prevents protein aggregation and supports the refolding of damaged proteins. In a special case, DnaK, together with the assistance of the AAA+ protein ClpB, can also refold aggregated proteins. Other Hsp70 systems have more specialized functions in the cell, for instance HscA appears to be involved in the assembly of Fe/S proteins. In contrast to ClpB, many AAA+ proteins associate with a peptidase to form proteolytic machines which remove irreversibly damaged proteins from the cellular pool. The AAA+ component of these proteolytic machines drives protein degradation. They are required not only for recognition of the substrate but also for substrate unfolding and translocation into the proteolytic chamber. In many cases, specific adaptor proteins modify the substrate binding properties of AAA+ proteins. While chaperones and proteases do not appear to directly cooperate with each other, both systems appear to be necessary for proper functioning of the cell and can, at least in part, substitute for one another. RID="*" ID="*"Corresponding author.  相似文献   

9.
Changes in mitochondrial function were studied in perfused liver from rats aged 24 – 365 days. Oxygen consumption together with the rates of gluconeogenesis, urea synthesis and ketogenesis were determined. Basal mitochondrial respiration as well as the ability of the liver to synthesize glucose, urea and ketone bodies declined from 24- to 365-day-old rats. On the other hand, on transition from 24 to 60 days the liver oxidation rate of hexanoate, sorbitol and glycerol is enhanced, but not of ketone bodies or palmitate. Our results show that the transition from weaning to middle age is accompanied by defined changes in hepatic substrate oxidation. From the observed time course of the decrease in basal and substrate-stimulated oxygen consumption, it is concluded that in rat liver cells a decline in respiratory chain function, long-chain fatty acid and ketone body metabolism, gluconeogenesis and ureogenesis occurs at a relatively early life stage. Received 19 June 1998; received after revision 11 September 1998; accepted 11 September 1998  相似文献   

10.
Until recently, the expression and primary function of the cell surface receptor CD40 and its ligand CD154 were considered restricted to B and T lymphocytes, and their interactions required for the thymus-dependent humoral response. However, current work from several groups challenges this view of the CD40/CD154 dyad as a mere mediator of lymphocyte communication. A variety of non-lymphocytic cell types express both receptor and ligand, including hematopoetic and non-hematopoetic cells, such as monocytes, basophils, eosinophils, dendritic cells, fibroblasts, smooth muscle, and endothelial cells. Accordingly, ligation of CD40 mediates a broad variety of immune and inflammatory responses, such as the expression of adhesion molecules, cytokines, matrix-degrading enzymes, prothrombotic activities, and apoptotic mediators. Consequently, CD40 signaling has been associated with pathogenic processes of chronic inflammatory diseases, such as autoimmune diseases, neurodegenerative disorders, graft-versus-host disease, cancer, and atherosclerosis. This review focuses on the synthesis and structure of CD40 and outlines CD154/CD40 signaling pathways, and emphasizes the previously unexpected importance of the CD40/CD154 receptor/ligand dyad in a spectrum of immunoregulatory processes and prevalent human diseases. Received 10 January 2000; revised 16 June 2000; accepted 5 July 2000 RID="†" ID="†" Review RID="*" ID="*" Corresponding author.  相似文献   

11.
Jaspamide (jasplakinolide) is a natural peptide isolated from marine sponges of Jaspis species and has fungicidal and growth-inhibiting activities. We characterized the jasplakinolide-induced loss of viability by programmed cell death in the HL-60 human promyelocytic leukemia cell line and found that this process was accompanied by neutral endopeptidase (NEP)/CD10 expression on the surface of the apoptotic cells. HL-60 cells do not normally express detectable amounts of NEP/CD10 on their surface or intracytoplasmically, but upon jaspamide treatment, CD10 was synthesized de novo, its expression being inhibited by cycloheximide pretreatment. Once synthesized, NEP/CD10 interfered with the jasplakinolide signal delivered to HL-60 cells. Inhibition of NEP/CD10 by the NEP inhibitor phosphoramidon or by an anti-CD10 monoclonal antibody significantly increased apoptosis induction. The appearance of CD10 on the cell surface was blocked by preincubation of the cells with the monocytic/macrophage-differentiating agents vitamin D3 and phorbol 12-myristate 13-acetate, but not by the granulocytic differentiating agents retinoic acid or dimethyl sulfoxide. Moreover, in the promonocytic U937 and mature monocytic THP-1 cell lines, jaspamide induced apoptosis but not CD10 expression. In HL-60 cells, CD10 expression was partially but not totally blocked by the broad-spectrum caspase inhibitor benzyloxacarbonyl-Val-Ala-Asp-fluoromethylketone, indicating a connection between apoptosis induction and CD10 synthesis. Our findings suggest that the CD10 expression is related to the programmed cell death induction by jaspamide, and also with the process of granulocytic differentiation in HL-60 cells. Received 22 April 2002; received after revision 8 June 2002; accepted 10 June 2002  相似文献   

12.
The stably transfected rat cell line HR24 expressing high levels of the inducible human hsp70 and its parental cell line Rat-1 were used for in vivo studies to analyse the role of hsp70 during thermal protein denaturation and the subsequent renaturation. In order to monitor denaturation and renaturation of a cellular protein in vivo, both cell lines were transiently transfected with firefly luciferase (Luc). The continuous monitoring of Luc activity during and after heat stress allowed a detailed analysis of the inactivation and reactivation kinetics in cells grown in monolayers. The aim of these studies was to distinguish a protective effect of increased hsp70 levels during heat shock-induced protein inactivation from a stimulation of reactivation. In this paper we show that in cells that are stably transfected with hsp70, thermal Luc inactivation decreased, and subsequent reactivation yielded higher activity levels, compared with the parental cells. The difference in early inactivation kinetics observed in the two cell lines suggests an immediate effect of the presence of an extra amount of hsp70 on enzyme inactivation. Using different mathematical models, the heat-induced inactivation and reactivation kinetics was compared with simulations of denaturation and renaturation. It is concluded that the model in which it is assumed that hsp70 is able to interact with partially denatured proteins, which did not yet lose their enzymatic activity, most optimally explains the experimental observations. Received 2 December 1998; received after revision 19 February 1999; accepted 18 March 1999  相似文献   

13.
Heat shock proteins (HSP) have been implicated in rodent models of autoimmunity, particularly arthritis, and there is suggestive though inconclusive evidence that they may also play a role in human autoimmune disease. The simplest hypothesis is based on molecular mimicry due to the amino-acid sequence homology between mammalian and microbial HSP. Recently OM-89, an extract of several strains ofEscherichia coli, has shown some efficacy in the treatment of rheumatoid arthritis (RA) when taken orally. Using species-specific antibodies, we show here that OM-89 contains the 65 kDa HSP (hsp65), while hsp65 was not detected in another bacterial extract containing other microorganisms, includingStaphylococcus aureus (OM-85). We suggest that if the human homologue of hsp65 is a relevant target antigen in the human disease, the efficacy of the preparation could be due to induction of oral tolerance or to switching the Th1 response towards Th2. Alternatively, even if the human hsp65 is not a target molecule in RA joints, OM-89 may evoke bystander suppression of joint inflammation via induction of TGF-secreting effector cells. These hypotheses should be tested in further studies.  相似文献   

14.
A central dogma in biology is the conversion of genetic information into active proteins. The biosynthesis of proteins by ribosomes and the subsequent folding of newly made proteins represent the last crucial steps in this process. To guarantee the correct folding of newly made proteins, a complex chaperone network is required in all cells. In concert with ongoing protein biosynthesis, ribosome-associated factors can interact directly with emerging nascent polypeptides to protect them from degradation or aggregation, to promote folding into their native structure, or to otherwise contribute to their folding program. Eukaryotic cells possess two major ribosome-associated systems, an Hsp70/Hsp40-based chaperone system and the functionally enigmatic NAC complex, whereas prokaryotes employ the Trigger Factor chaperone. Recent structural insights into Trigger Factor reveal an intricate cradle-like structure that, together with the exit site of the ribosome, forms a protected environment for the folding of newly synthesized proteins. Received 29 June 2005; received after revision 4 August 2005; accepted 18 August 2005  相似文献   

15.
CpG motifs originating from bacterial DNA (CpG DNA) can act as danger signals for the mammalian immune system. These CpG DNA motifs like many other pathogen-associated molecular patterns are believed to be recognized by a member of the toll-like receptor family, TLR-9. Here we show results suggesting that heat shock protein 90 (hsp90) is also implicated in the recognition of CpG DNA. Hsp90 was characterized as a binder to oligodeoxynucleotides (ODNs) containing CpG motifs (CpG ODNs) after several purification steps from crude protein extracts of peripheral blood mononuclear cells. This finding was further supported by direct binding of CpG ODNs to commercially available human hsp90. Additionally, immunohistochemistry studies showed redistribution of hsp90 upon CpG ODN uptake. Thus, we propose that hsp90 can act as a ligand transfer molecule and/or play a central role in the signaling cascade induced by CpG DNA. Received 18 December 2002; accepted 6 January 2002 RID="*" ID="*"Corresponding author. B. Agerberth and G. H. Gudmundsson contributed equally to this work.  相似文献   

16.
Molecular basis for differences between human joints   总被引:8,自引:0,他引:8  
The molecular program of a cell determines responses including induction or inhibition of genes for function and activity, and this is true of the cells within articular cartilage, a major functional component of the joint. While our studies have previously focussed on differences in the molecular programs of the cells within the superficial and deep zones, we have recently begun to focus on relative differences between joints, such as the knee and ankle. In the human, these joints vary greatly in their susceptibility to joint diseases, such as osteoarthritis (OA). We have predicted that there would be a molecular basis for differences between joints that could lead to differences in susceptibility to OA, if inherent pathways locked into the resident cells induce differences in their response to their environment. We have been able to show that there are differences between the matrix components and water content; these properties correspond to a higher equilibrium modulus and dynamic stiffness but lower hydraulic permeability and serve to make the ankle cartilage stiffer, slowing movement of molecules through the cartilage. In addition to these biochemical differences in the cartilage matrix, we have also identified relative differences in the strength of the response to stimulation of chondrocytes from knee and ankle. The stronger response of the knee chondrocytes includes factors that increase damage to the cartilage matrix, such as a depression of matrix synthesis and increased enzyme activity. This response by the knee chondrocytes results in enzyme damage to the matrix that the cells may not be able to repair, while the weaker response of the ankle chondrocytes may allow the cells to repair their matrix damage.  相似文献   

17.
We investigated the role of nitric oxide (NO) in the mitochondrial derangement associated with the functional response to ischemia-reperfusion of hyperthyroid rat hearts. Mitochondria were isolated at 3000 g from hearts subjected to ischemia-reperfusion, with or without N-nitro-L-arginine (L-NNA, an NO synthase inhibitor). During reperfusion, hyperthyroid hearts displayed tachycardia and low functional recovery. Their mitochondria exhibited O2 consumption similar to euthyroid controls, while H2O2 production, hydroperoxide, protein-bound carbonyl and nitrotyrosine levels, and susceptibility to swelling were higher. L-NNA blocked the reperfusion tachycardic response and increased inotropic recovery in hyperthyroid hearts. L-NNA decreased mitochondrial H2O2 production and oxidative damage, and increased respiration and tolerance to swelling. Such effects were higher in hyperthyroid preparations. These results confirm the role of mitochondria in ischemia-reperfusion damage, and strongly suggest that NO overproduction is involved in the high mitochondrial dysfunction and the low recovery of hyperthyroid hearts from ischemia-reperfusion. L-NNA also decreased protein content and cytochrome oxidase activity of a mitochondrial fraction isolated at 8000 g. This and previous results suggest that the above fraction contains, together with light mitochondria, damaged mitochondria coming from the heaviest fraction, which has the highest cytochrome oxidase activity and capacity to produce H2O2. Therefore, we propose that the high mitochondrial susceptibility to swelling, favoring mitochondrial population purification from H2O2-overproducing mitochondria, limits hyperthyroid heart oxidative stress.Received 24 March 2004; received after revision 9 June 2004; accepted 5 July 2004  相似文献   

18.
Neuronal loss and neuritic/cytoskeletal lesions (synaptic disconnection and proliferation of dystrophic neurites) represent major dementia-associated abnormalities in Alzheimer’s disease (AD). This study examined the role of oxidative stress as a factor contributing to both the cell death and neuritic degeneration cascades in AD. Primary neuron cultures were treated with H2O2 (9–90 μM) or desferrioxamine (2–25 μM) for 24 h and then analyzed for viability, mitochondrial mass, mitochondrial function, and pro-apoptosis and sprouting gene expression. H2O2 treatment causes free-radical injury and desferrioxamine causes hypoxia-type injury without free radical generation. The H2O2-treated cells exhibited sustained viability but neurite retraction, impaired mitochondrial function, increased levels of the pro-apoptosis gene product CD95/Fas, reduced expression of N2J1-immunoreactive neuronal thread protein and synaptophysin, and reduced distribution of mitochondria in neuritic processes. Desferrioxamine treatment resulted in dose-dependent neuronal loss associated with impaired mitochondrial function, proliferation of neurites, and reduced expression of GAP-43, which has a role in path-finding during neurite outgrowth. The results suggest that oxidative stress can cause neurodegeneration associated with enhanced susceptibility to apoptosis due to activation of pro-apoptosis genes, neurite retraction (synaptic disconnection), and impaired transport of mitochondria to cell processes where they are likely required for synaptic function. In contrast, hypoxia-type injury causes neuronal loss with proliferation of neurites (sprouting), impaired mitochondrial function, and reduced expression of molecules required to form and maintain synaptic connections. Since similar abnormalities occur in AD, both oxidative stress and hypoxic injury can contribute to AD neurodegeneration. Received 24 May 2000; received after revision 7 July 2000; accepted 27 July 2000  相似文献   

19.
One of the most important opportunistic pathogens associated with acquired immunodeficiency syndrome (AIDS) is the M. avium complex. M. avium infections are found in up to 70% of individuals in advanced stages of AIDS. It is apparent that M. avium can replicate in host macrophages and persist for long periods. This group of mycobacteria are distinguished by the presence of unique, highly antigenic, surface-located lipids known as the glycopeptidolipids (GPLs). The GPLs are the chemical basis of the 31 distinct serovars of the M. avium complex, and have also been identified in some other species. The M. avium lipids are immunosuppressive and can induce a variety of cytokines that affect general host responses. Despite extensive chemical characterization of the structures of these GPLs, much work is needed to elucidate the molecular mechanism involved in this complex glycosylation pathway and its genetic basis. The challenges for the future lie in explaining the roles of these copious products in the intracellular life and infectivity of mycobacteria. The intention of our review is to offer a concise account of the structures of the M. avium lipids, their putative roles in the host responses, bacterial physiology and pathogenesis, particularly in immunocompromised patients such as those infected with human immunodeficiency virus (HIV). Advances in chemical synthesis of the various haptenic oligosaccharides are also given to demonstrate how these have helped to define the immunogenic determinants. We believe that future research should involve the creation of conditional mutants defective in these lipids for both functional and biosynthesis studies which will complement biological assays using chemically defined or modified neoglycoconjugates. Received 7 May 2001; received after revision 28 June 2001; accepted 28 June 2001  相似文献   

20.
South American siskin radiation was studied by both mitochondrial cytochrome b (mt cyt b) DNA sequencing and homologous phenotypic characters; the latter were coded separately according to sex. Mixed phenetic and molecular (total evidence) dendrograms were constructed and the corresponding analyses suggest that speciation started in the South American siskin group with a north to south separation (Carduelis notata/C. barbata) along the Andean spine. A second split may have taken place around the Peruvian Andean mountains, corresponding to the present distribution pattern of C. olivacea. The most recent speciation events seem to have occurred in three sister species pairs: (i) C. xanthogastra/C. atrata, (ii) C. magellanica/C. yarrellii, (iii) C. cucullata/C. crassirostris. Accumulation of consistent characters in both morphological and molecular data at the basal nodes of the dendrograms indicate that speciation events occurred within a short period of time. Our data also suggest that speciation probably occurred by sexual selection through female mating choice in this radiation. Additionally, studies of variable amino acid residues in the mt cyt b molecule show that the three variable amino acids found are placed in the mitochondrial transmembrane region, which is also part of the hypervariable region in mammals. Each of the three amino acid changes occur in each of the three postulated evolutionary groups. Received 11 September 2001; received after revision 12 October 2001; accepted 15 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号