首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A E Zeller 《Experientia》1977,33(2):143-150
Enzymes were the first clearly recognized components of snake venoms. When several more were discovered, attempts were made to correlate venom action with enzymic functions. The last few years have seen most successful efforts in the identification, isolation and structrual elucidation of highly toxic polypeptides present in snake venoms, in particular of 'neurotoxins' and membrane-active toxins. Following this development the polypeptides were called the true toxic components and the enzymes lost their previous central position in venom pharmacology. The time, therefore, has come re-evaluate the role of enzymes in the complex interaction between snake and prey. While highly active polypeptides indeed dominate the actionof hydrophiid venoms, they appear to play a lesser role in crotalid venom action as compared with enzyme components. Enzymes are involved in many levels of venom action, e.g. by serving as spreading factors, of by producing very active agents, such as bradykinin and lysolecithins in tissues of preys or predators. Some toxins, e.g. the membrane-active polypeptides appear to participate in the interaction between membrane phospholipids and venom phospholipases. The classical neurotoxin, beta-bungarotoxin, has been recognized as a powerful phospholipase. Several instances are known which indicate that some enzymes potentiate the toxic action of others; the analysis of a single enzyme may, therefore, not fully reveal its biofunction. For 3 enzymes,ophidian L-amino acid oxicase, ATPpyrophosphatase, and acetylcholinesterase, some of the problems pertaining to venom toxicity are discussed.  相似文献   

2.
Summary Enzymes were the first clearly recognized components of snake venoms. When several more were discovered, attempts were made to correlate venom action with enzymic functions. The last few years have seen most successful efforts in the identification, isolation and structural elucidation of highly toxic polypeptides present in snake venoms, in particular of neurotoxins and membrane-active toxins. Following this development the polypeptides were called the true toxic components and the enzymes lost their previous central position in venom pharmacology. The time, therefore, has come to re-evaluate the role of enzymes in the complex interaction between snake and prey. While highly active polypeptides indeed dominate the action of hydrophiid venoms, they appear to play a lesser role in crotalid venom action as compared with enzyme components. Enzymes are involved in many levels of venom action, e. g. by serving as spreading factors, of by producing very active agents, such as bradykinin and lysolecithins in tissues of preys or predators. Some toxins, e. g. the membrane-active polypeptides appear to participate in the interaction between membrane phospholipids and venom phospholipases. The classical neurotoxin, -bungarotoxin, has been recognized as a powerful phospholipase. Several instances are known which indicate that some enzymes potentiate the toxic action of others; the analysis of a single enzyme may, therefore, not fully reveal its biofunction. For 3 enzymes, ophidianl-amino acid oxidase, ATPpyrophosphatase, and acetylcholinesterase, some of the problems pertaining to venom toxicity are discussed.  相似文献   

3.
4.
Snake venom contains mixture of bioactive proteins and polypeptides. Most of these proteins and polypeptides exist as monomers, but some of them form complexes in the venom. These complexes exhibit much higher levels of pharmacological activity compared to individual components and play an important role in pathophysiological effects during envenomation. They are formed through covalent and/or non-covalent interactions. The subunits of the complexes are either identical (homodimers) or dissimilar (heterodimers; in some cases subunits belong to different families of proteins). The formation of complexes, at times, eliminates the non-specific binding and enhances the binding to the target molecule. On several occasions, it also leads to recognition of new targets as protein-protein interaction in complexes exposes the critical amino acid residues buried in the monomers. Here, we describe the structure and function of various protein complexes of snake venoms and their role in snake venom toxicity.  相似文献   

5.
Gram-positive and -negative bacteria are dangerous pathogens that may cause human infection diseases, especially due to the increasingly high prevalence of antibiotic resistance, which is becoming one of the most alarming clinical problems. In the search for novel antimicrobial compounds, snake venoms represent a rich source for such compounds, which are produced by specialized glands in the snake’s jawbone. Several venom compounds have been used for antimicrobial effects. Among them are phospholipases A2, which hydrolyze phospholipids and could act on bacterial cell surfaces. Moreover, metalloproteinases and l-amino acid oxidases, which represent important enzyme classes with antimicrobial properties, are investigated in this study. Finally, antimicrobial peptides from multiple classes are also found in snake venoms and will be mentioned. All these molecules have demonstrated an interesting alternative for controlling microorganisms that are resistant to conventional antibiotics, contributing in medicine due to their differential mechanisms of action and versatility. In this review, snake venom antimicrobial compounds will be focused on, including their enormous biotechnological applications for drug development.  相似文献   

6.
7.
Snake venom thrombin-like enzymes: from reptilase to now   总被引:12,自引:0,他引:12  
The snake venom thrombin-like enzymes (SVTLEs) comprise a number of serine proteases functionally and structurally related to thrombin. Until recently, only nine complete sequences of this subgroup of the serine protease family were known. Over the past 5 years, the primary structure of several SVTLEs has been characterized, and now this family includes several members. Of particular interest is their possible use in pathologies such as thrombosis. The aim of the present review is to summarize the state of the art concerning the evolutionary, structural and biological features of the SVTLEs.Received 16 August 2003; received after revision 26 September 2003; accepted 1 October 2003  相似文献   

8.
Summary Arylsulfatase activity has been demonstrated in rat and human parotid and submandibular saliva indicating that oral bacteria are not the only source of salivary sulfatase activity. Activity was also observed in human sweat, tears and in snake venom.Acknowledgments. We extent appreciation to Drs.C. Dawes andK. Abe for assistance in saliva collection, to Dr.K. W. Stewart who provided fresh snake venoms and to Dr.E. T. Pritchard in whose laboratory this study was conducted. Supported by grant Nr. MT 3536 from MRC of Canada.  相似文献   

9.
Summary 2 proteins producing myoglobinuria in mice were isolated from the venom of the Australian elapid snakePseudechis colletti and identified as phospholipases A showing close similarities in amino acid composition to a similarly acting enzyme from a sea snake venom (Enhydrina schistosa).  相似文献   

10.
11.
Because of possible variation in venom composition, an understanding of venomous snake systematics is of great importance for the optimization of antivenom treatment of snakebite patients. Intraspecific variation in the morphology of many venomous snakes complicates the definition and indentification of some species when allopatric populations are involved. Selectively neutral or near-neutral mtDNA sequences can reveal evolutionary relationships obscured by ecogenetically-caused morphological variation. We use comparative sequencing of the cytochrome oxidase subunit 1 gene to reveal the existence of a widespread, cryptic species of spiting cobra from southeast Asia. This species,Naja siamensis, is widely sympatric with other Asiatic cobra species. This may be of considerable medical significance, and calls for further research into venom composition in Asiatic cobras.  相似文献   

12.
Because of possible variation in venom composition, an understanding of venomous snake systematics is of great importance for the optimization of antivenom treatment of snakebite patients. Intraspecific variation in the morphology of many venomous snakes complicates the definition and indentification of some species when allopatric populations are involved. Selectively neutral or near-neutral mtDNA sequences can reveal evolutionary relationships obscured by ecogenetically-caused morphological variation. We use comparative sequencing of the cytochrome oxidase subunit 1 gene to reveal the existence of a widespread, cryptic species of spiting cobra from southeast Asia. This species,Naja siamensis, is widely sympatric with other Asiatic cobra species. This may be of considerable medical significance, and calls for further research into venom composition in Asiatic cobras.  相似文献   

13.
Modulation of phospholipase A2 activity generated by molecular evolution   总被引:4,自引:0,他引:4  
Snake venom oligomeric neurotoxins offer several unique examples of modulation of phospholipase A2 (PLA2) activity generated by molecular evolution. This phenomenon was found in evolutionary younger snakes and is probably common for representatives of the genus Vipera. At present, the best-studied example is the heterodimeric neurotoxin vipoxin from the venom of the southeast European snake Vipera ammodytes meridionalis. It is a complex between a basic strongly toxic PLA2 and an acidic and catalytically inactive PLA2-like component (Inh). This is the first reported example of a high degree of structural homology (62%) between an enzyme and its natural protein inhibitor. The inhibitor is a product of the divergent evolution of the unstable PLA2 in order to stabilize it and to preserve the pharmacological activity/toxicity for a long time. Inh reduces both the catalytic activity and toxicity of PLA2. Vipoxin also illustrates evolution of the catalytic into a inhibitory function. Vipoxin analogues have been found in the venom of viperid snakes inhabiting diverse regions of the world. An attempt is made to explain modulation of the toxic function by the three-dimensional structure of vipoxin.  相似文献   

14.
Gamma delta (γ δ) T cells are among the least understood components of the immune system. While these cells appear to contribute uniquely to host immune competence, defining their functions in the context of host biology and pathology has been difficult. This is largely because it is unclear what antigens the γ δ T cell receptor repertoire is directed against. During the past year, there have been noteworthy advances in this area. Their significance in the context of γ δ T cell biology is discussed. Received 19 January 2006; received after revision 16 March 2006; accepted 26 May 2006  相似文献   

15.
A large variety of snake toxins evolved from PLA2 digestive enzymes through a process of ‘accelerated evolution’. These toxins have different tissue targets, membrane receptors and mechanisms of alteration of the cell plasma membrane. Two of the most commonly induced effects by venom PLA2s are neurotoxicity and myotoxicity. Here, we will discuss how these snake toxins achieve a similar cellular lesion, which is evolutionarily highly conserved, despite the differences listed above. They cause an initial plasma membrane perturbation which promotes a large increase of the cytosolic Ca2+ concentration leading to cell degeneration, following modes that we discuss in detail for muscle cells and for the neuromuscular junction. The different systemic pathophysiological consequences caused by these toxins are not due to different mechanisms of cell toxicity, but to the intrinsic anatomical and physiological properties of the targeted tissues and cells. Received 05 March 2008; received after revision 08 April 2008; accepted 29 April 2008  相似文献   

16.
In recent years, several molecular engineering methods of designing bispecific antibodies in various formats have been developed. Tandem-scFvs comprising two scFvs fused together via a peptide are 55-kDa molecules, and are one of the most promising and most straightforward approaches to bispecific antibody production. We report an attempt to design more effective antivenoms to the Androctonus australis scorpion using murine scFvs as building blocks to create a unique bispecific molecule that neutralizes the potent neurotoxins AahI and AahII. The tandem-scFv was produced in recombinant bacteria, purified by immobilized metal ion affinity chromatography, and analyzed by polyacrylamide gel electrophoresis, Western blot, gel filtration, mass spectrometry, and direct and competitive radioimmunoassay. In vivo, it neutralized the binding of the AahI and AahII toxins to their receptor, and protected mice against experimental envenomation. The findings reported here highlight the potential of recombinant antibody fragments for protecting against scorpion venom toxicity. Received 8 September 2006; received after revision 10 November 2006; accepted 27 November 2006  相似文献   

17.
Antimicrobial and cytolytic peptides of venomous arthropods   总被引:1,自引:1,他引:0  
As a response to invading microorganisms, the innate immune system of arthropods has evolved a complex arrangement of constitutive and inducible antimicrobial peptides that immediately destroy a large variety of pathogens. At the same time, venomous arthropods have developed an additional offensive system in their venom glands to subdue their prey items. In this complex venom system, several enzymes, low-molecular-mass compounds, neurotoxins, antimicrobial and cytolytic peptides interact together, resulting in extremely rapid immobilization and/or killing of prey or aggressors. This review provides an overview of antimicrobial peptides identified in the hemolymph of venomous arthropods, and especially of cytolytic peptides in their venom. For these peptides a dual role is proposed: acting as antimicrobials as well as increasing the potency of the venom by influencing excitable cells.Received 17 March 2003; received after revision 11 June 2003; accepted 17 June 2003  相似文献   

18.
Disorders in which individuals exhibit certain features of aging early in life are referred to as segmental progeroid syndromes. With the progress that has been made in understanding the etiologies of these conditions in the past decade, potential therapeutic options have begun to move from the realm of improbability to initial stages of testing. Among these syndromes, relevant advances have recently been made in Werner syndrome, one of several progeroid syndromes characterized by defective DNA helicases, and Hutchinson-Gilford progeria syndrome, which is characterized by aberrant processing of the nuclear envelope protein lamin A. Although best known for their causative roles in these illnesses, Werner protein and lamin A have also recently emerged as key players vulnerable to epigenetic changes that contribute to tumorigenesis and aging. These advances further demonstrate that understanding progeroid syndromes and introducing adequate treatments will not only prove beneficial to patients suffering from these dramatic diseases, but will also provide new mechanistic insights into cancer and normal aging processes. Received 28 July 2006; received after revision 5 September 2006; accepted 13 October 2006  相似文献   

19.
This review describes the structure and function of prolyl endopeptidase (PEP) enzymes and how they are being evaluated as drug targets and therapeutic agents. The most well studied PEP family has a two-domain structure whose unique seven-blade β-propeller domain works with the catalytic domain to hydrolyze the peptide bond on the carboxyl side of internal proline residues of an oligopeptide substrate. Structural and functional studies on this protease family have elucidated the mechanism for peptide entry between the two domains. Other structurally unrelated PEPs have been identified, but have not been studied in detail. Human PEP has been evaluated as a pharmacological target for neurological diseases due to its high brain concentration and ability to cleave neuropeptides in vitro. Recently, microbial PEPs have been studied as potential therapeutics for celiac sprue, an inflammatory disease of the small intestine triggered by proline-rich gluten. Received 6 July 2006; received after revision 17 August 2006; accepted 1 November 2006  相似文献   

20.
Molecular targets of glioma invasion   总被引:9,自引:1,他引:8  
Glioblastoma multiforme is the most common and lethal primary malignant brain tumor. Although considerable progress has been made in technical proficiencies of surgical and radiation treatment for brain tumor patients, the impact of these advances on clinical outcome has been disappointing, with median survival time not exceeding 15 months. Over the last 30 years, no significant increase in survival of patients suffering from this disease has been achieved. A fundamental source of the management challenge presented in glioma patients is the insidious propensity of tumor invasion into distant brain tissue. Invasive tumor cells escape surgical removal and geographically dodge lethal radiation exposure and chemotherapy. Recent improved understanding of biochemical and molecular determinants of glioma cell invasion provide valuable insight into the underlying biological features of the disease, as well as illuminating possible new therapeutic targets. These findings are moving forward to translational research and clinical trials as novel antiglioma therapies. Received 25 July 2006; received after revision 27 October 2006; accepted 22 November 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号