首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In type 1 diabetes (T1D), a break in central and peripheral tolerance results in antigen-specific T cells destroying insulin-producing, pancreatic beta cells. Herein, we discuss the critical sub-population of dendritic cells responsible for mediating both the cross-presentation of islet antigen to CD8+ T cells and the direct presentation of beta cell antigen to CD4+ T cells. These cells, termed merocytic dendritic cells (mcDC), are more numerous in non-obese diabetic (NOD), and antigen-loaded mcDC rescue CD8+ T cells from peripheral anergy and deletion, and stimulate islet-reactive CD4+ T cells. When purified from the pancreatic lymph nodes of overtly diabetic NOD mice, mcDC can break peripheral T cell tolerance to beta cell antigens in vivo and induce rapid onset T cell-mediated T1D in young NOD mouse. Thus, the mcDC subset appears to represent the long-sought critical antigen-presenting cell responsible for breaking peripheral tolerance to beta cell antigen in vivo.  相似文献   

2.
CD8+ T lymphocytes screen the surface of all cells in the body to detect pathogen infection or oncogenic transformation. They recognize peptides derived from cellular proteins displayed at the plasma membrane by major histocompatibility complex (MHC) class I molecules. Peptides are mostly by-products of cytosolic proteolytic enzymes. Peptidic ligands of MHC class I molecules are also generated in the secretory and vesicular pathways. Features of protein substrates, of proteases and of available MHC class I molecules for loading peptides in these compartments shape a singular collection of ligands that also contain different, longer, and lower affinity peptides than ligands produced in the cytosol. Especially in individuals who lack the transporters associated with antigen processing, TAP, and in infected and tumor cells where TAP is blocked, which thus have no supply of peptides derived from the cytosol, MHC class I ligands generated in the secretory and vesicular pathways contribute to shaping the CD8+ T lymphocyte response.  相似文献   

3.
A challenging task for the adaptive immune system of vertebrates is to identify and eliminate intracellular antigens. Therefore a highly specialized antigen presentation machinery has evolved to display fragments of newly synthesized proteins to effector cells of the immune system at the cell surface. After proteasomal degradation of unwanted proteins or defective ribosome products, resulting peptides are translocated into the endoplasmic reticulum by the transporter associated with antigen processing and loaded onto major histocompatibility complex (MHC) class I molecules. Peptide-MHC I complexes are transported via the secretory pathway to the cell surface where they are then inspected by cytotoxic T lymphocytes, which can trigger an immune response. This review summarizes the current view of the intracellular machinery of antigen processing and of viral immune escape mechanisms to circumvent destruction by the host. Received 4 October 2005; received after revision 19 November 2005; accepted 24 November 2005  相似文献   

4.
5.
TCR-mediated specific recognition of antigenic peptides in the context of classical MHC molecules is a cornerstone of adaptive immunity of jawed vertebrate. Ancillary to these interactions, the T cell repertoire also includes unconventional T cells that recognize endogenous and/or exogenous antigens in a classical MHC-unrestricted manner. Among these, the mammalian nonclassical MHC class I-restricted invariant T cell (iT) subsets, such as iNKT and MAIT cells, are now believed to be integral to immune response initiation as well as in orchestrating subsequent adaptive immunity. Until recently the evolutionary origins of these cells were unknown. Here we review our current understanding of a nonclassical MHC class I-restricted iT cell population in the amphibian Xenopus laevis. Parallels with the mammalian iNKT and MAIT cells underline the crucial biological roles of these evolutionarily ancient immune subsets.  相似文献   

6.
The classical view that endogenous antigens are processed by the proteasome and loaded on MHC class I molecules in the endoplasmic reticulum, while exogenous antigens taken up by endocytosis or phagocytosis are degraded and loaded on MHC class II in lysosome-derived organelles, has evolved along with the improvement of our understanding of the cell biology of antigen-presenting cells. In recent years, evidence for alternative presentation pathways has emerged. Exogenous antigens can be processed by the proteasome and loaded on MHC class I through a pathway called cross-presentation. Moreover, endogenous antigens can be targeted to lytic organelles for presentation on MHC class II through autophagy, a highly conserved cellular process of self-eating. Recent evidence indicates that the vacuolar degradation of endogenous antigens is also beneficial for presentation on MHC class I molecules. This review focuses on how various forms of autophagy participate to presentation of these antigens on MHC class I.  相似文献   

7.
Major histocompatibility complex (MHC) class I molecules present antigenic peptides to CD8+ T cells, providing the basis for immune recognition of pathogen-infected cells. Peptides generated mainly by proteasomes in the cytosol are transported into the lumen of the endoplasmic reticulum by transporters associated with antigen processing (TAP). The maturation of MHC class I molecules is controlled by a number of accessory proteins and chaperones that are to a varying degree dedicated to the assembly of MHC class I. Several newly characterised proteins have been demonstrated to play important roles in this process. This review focuses on the functional relationship and evolutionary history of the antigen-processing machinery (APM) components and MHC class I itself. These are of great interest for further elucidating the origin of the immune system and understanding the mechanisms of antigen presentation and immunology in general.  相似文献   

8.
Gangliosides are major components of highly organized membrane microdomains or rafts, yet little is known about the role of gangliosides in raft organization. This is also the case of gangliosides in TCR-mediated activation. Comprehensive structural analysis of gangliosides in the primary thymocytes and CD4+ T and CD8+ T cells was not achieved due to technical difficulties. We have found that CD8+ T cells express very high levels of o-series gangliosides, but on the other hand, CD4+ T cells preferably express a-series gangliosides. In the TCR-dependent activation, CD4+ T cells selectively require a-series gangliosides, but CD8+ T cells do require only o-series gangliosides but not a-series gangliosides. Ganglioside GM3 synthase-deficient mice lacking a-series gangliosides neither exhibited the TCR-dependent activation of CD4+ T nor developed ovalbumin-induced allergic airway inflammation. These findings imply that the distinct expression pattern of ganglioside species in CD4+ and CD8+ T cells define the immune function of each T cell subset.  相似文献   

9.
It is now well demonstrated that the repertoire of T cells includes not only cells that recognize specific MHC-presented peptide antigens, but also cells that recognize specific self and foreign lipid antigens. This T cell recognition of lipid antigens is mediated by a family of conserved MHC class I-like cell surface glycoproteins known as CD1 molecules. These are specialized antigen-presenting molecules that directly bind a wide variety of lipids and present them for T cell recognition at the surface of antigen-presenting cells. Distinct populations of T cells exist that recognize CD1-presented lipids of microbial, environmental or self origin, and these T cells participate in immune responses associated with infectious, neoplastic, autoimmune and allergic diseases. Here we review the current knowledge of the biology of the CD1 system, including the structure, biosynthesis and trafficking of CD1 molecules, the structures of defined lipid antigens and the types of functional responses mediated by T cells specific for CD1-presented lipids.  相似文献   

10.
The immunological properties of human endothelial cells suggest they perform a pivotal role in acute and chronic rejection following solid organ transplantation. In this review the basic features of acute and chronic rejection are described as are the cellular and molecular requirements for antigen presentation. Traditionally, antigen-presenting cells are considered to be bone marrow-derived cells. However, these conclusions have been derived from rodent models of allograft rejection where bone marrow-derived passenger leukocytes are the only source of donor major histocompatibility complex (MHC) class II in the grafted organ. In contrast, in humans, virtually all the microvascular and small vessel endothelial cells are ‘constitutively’ positive for MHC class II antigens. The phenotypic properties of human endothelial cells, their response to cytokines and their ability to stimulate resting T cells are described. Unlike bone marrow-derived antigen presenting cells (APCs), which utilise B7/CD28 interactions, human endothelial cells utilise lymphocyte function antigen 3 (LFA3)/CD2 pathways to stimulate T cells. They activate a CD45RO + B7-independent subpopulation of T cells. Their effect on allogeneic T cells is compared with other non-bone marrow-derived cells such as fibroblasts, epithelial cells and smooth muscle cells, which are unable to stimulate resting T cells. Evidence is presented suggesting that release of MHC and non-human leukocyte antigens (HLA) from endothelial cells stimulates an alloantibody and autoimmune response leading to chronic rejection. Received 30 March 1998; received after revision 4 May 1998; accepted 4 May 1998  相似文献   

11.
Naïve CD4+ T cells undergo massive cell proliferation upon encountering their cognate ligand. This proliferation depends upon appropriate cues from the antigen-presenting cells that have processed the antigen and present the peptide to the T cells, and requires the establishment of a cytokine environment that can support such proliferation. Expansion of antigen-specific CD4+ T cells needs to be coupled with differentiation into one of several effector/regulatory phenotypes if the priming event is to result in cells that can initially act to control the particular pathogen that elicited the response, and later to serve as memory cells to insure an appropriate response upon reintroduction of the pathogen. Here, we discuss the initiation of T helper lineage commitment, the positive feedback regulation by the cytokine environment to enhance and stabilize the differentiation into distinct T helper subsets, and the biological significance of CD4+ T cell plasticity and long-term CD4+ T cell memory.  相似文献   

12.
Cytotoxic (CD8+) and helper (CD4+) T cells play a crucial role in resolving infections by intracellular pathogens. The development of technologies to visualize antigen-specific T cell responses in mice and men over the past decade has allowed a dissection of the formation of adaptive T cell immunity. This review gives a brief overview of the currently used detection techniques and possible future additions. Furthermore, we discuss our current understanding of the formation of antigen-specific T cell responses, with particular attention to the similarities and differences in CD4+ and CD8+ T cell responses, the functional heterogeneity within responder T cell pools and the regulation of CD8+ T cell responses by dendritic cells and CD4+ helper T cells. Received 16 June 2005; received after revision 2 August 2005; accepted 15 August 2005  相似文献   

13.
T cells are well known to recognize peptide antigens presented by major histocompatibility (MHC) class I or class II molecules. More recently, the CD1 family of antigen-presenting molecules has been shown to present both mammalian and microbial glycolipid antigens for specific recognition by T cells. Human CD1c proteins mediate T cell recognition of polyisoprenyl glycolipids, evolutionarily conserved phosphoglycolipids, which function in glycan synthesis pathways. This family of antigenic molecules is particularly attractive for the study of the molecular features that control T cell recognition of self and foreign glycolipids because natural polyisoprenols from mammals, fungi, protozoa, mycobacteria and eubacteria differ in structure. Moreover, these naturally occurring structural differences can influence their recognition by CD1c-restricted T cells. This review of the structural diversity and evolutionary relationships of polyisoprenoid glycolipids emphasizes those features of polyisoprenyl glycolipid biosynthesis that are relevant to their functions as targets of CD1-mediated T cell responses. Received 16 March 2001; received after revision 19 April 2001; accepted 23 April 2001  相似文献   

14.
Autoreactive CD8+ regulatory T cells (Tregs) play important roles as modulators of immune responses against self, and numerical and functional defects in CD8+ Tregs have been linked to autoimmunity. Several subsets of CD8+ Tregs have been described. However, the origin of these T cells and how they participate in the natural progression of autoimmunity remain poorly defined. We discuss several lines of evidence suggesting that the autoimmune process itself promotes the development of autoregulatory CD8+ T cells. We posit that chronic autoantigenic exposure fosters the differentiation of non-pathogenic autoreactive CD8+ T cells into antigen-experienced, memory-like autoregulatory T cells, to generate a “negative feedback” regulatory loop capable of countering pathogenic autoreactive effectors. This hypothesis predicts that approaches capable of boosting autoregulatory T cell memory will be able to blunt autoimmunity without compromising systemic immunity.  相似文献   

15.
The ubiquitin–proteasome system (UPS) degrades intracellular proteins into peptide fragments that can be presented by major histocompatibility complex (MHC) class I molecules. While the UPS is functional in all mammalian cells, its subunit composition differs depending on cell type and stimuli received. Thus, cells of the hematopoietic lineage and cells exposed to (pro)inflammatory cytokines express three proteasome immunosubunits, which form the catalytic centers of immunoproteasomes, and the proteasome activator PA28. Cortical thymic epithelial cells express a thymus-specific proteasome subunit that induces the assembly of thymoproteasomes. We here review new developments regarding the role of these different proteasome components in MHC class I antigen processing, T cell repertoire selection and CD8 T cell responses. We further discuss recently discovered functions of proteasomes in peptide splicing, lymphocyte survival and the regulation of cytokine production and inflammatory responses.  相似文献   

16.
Adaptive immunity critically contributes to control acute infection with enteropathogenic Yersinia pseudotuberculosis; however, the role of CD4+ T cell subsets in establishing infection and allowing pathogen persistence remains elusive. Here, we assessed the modulatory capacity of Y. pseudotuberculosis on CD4+ T cell differentiation. Using in vivo assays, we report that infection with Y. pseudotuberculosis resulted in enhanced priming of IL-17-producing T cells (Th17 cells), whereas induction of Foxp3+ regulatory T cells (Tregs) was severely disrupted in gut-draining mesenteric lymph nodes (mLNs), in line with altered frequencies of tolerogenic and proinflammatory dendritic cell (DC) subsets within mLNs. Additionally, by using a DC-free in vitro system, we could demonstrate that Y. pseudotuberculosis can directly modulate T cell receptor (TCR) downstream signaling within naïve CD4+ T cells and Tregs via injection of effector molecules through the type III secretion system, thereby affecting their functional properties. Importantly, modulation of naïve CD4+ T cells by Y. pseudotuberculosis resulted in an enhanced Th17 differentiation and decreased induction of Foxp3+ Tregs in vitro. These findings shed light to the adjustment of the Th17-Treg axis in response to acute Y. pseudotuberculosis infection and highlight the direct modulation of CD4+ T cell subsets by altering their TCR downstream signaling.  相似文献   

17.
Human cytomegalovirus (HCMV) persists after infection but is controlled by cellular immune responses, particularly by CD8+ T cells. If infected individuals are immunosuppressed, HCMV can be reactivated. Upon testing the blood of healthy donors with human lymphocyte antigen tetramers, we found one individual with about 50 % of his CD8+ T cells being specific for the immunodominant pp65 epitope NLVPMVATV. Over a period of 2 years the high level of HCMV-specific T cells was maintained, and no HCMV DNA could be detected. At one timepoint, however, HCMV-specific DNA was detected, while 65 % of CD8+ T cells were specific for HCMV. When virus was detectable, a lower percentage of HCMV-specific CD8+ T cells showed interferon γ (IFN-γ) production after peptide stimulation in vitro. These data suggest that HCMV reactivation may also occur in immunocompetent persons, accompanied by the presence of HCMV-specific CD8+ T cells which are not producing IFNγ, and therefore potentially anergic or in vivo exhausted. Received 6 March 2002; received after revision 15 April 2002; accepted 17 April 2002  相似文献   

18.
In higher organisms, innate scavenging cells maintain physiologic homeostasis by removal of the billions of apoptotic cells generated on a daily basis. Apoptotic cell removal requires efficient recognition and uptake by professional and non-professional phagocytic cells, which are governed by an array of soluble and apoptotic cell-integral signals resulting in immunologically silent clearance. While apoptosis is associated with profound suppression of adaptive and innate inflammatory immunity, we have only begun to scratch the surface in understanding how immunologic tolerance to apoptotic self manifest at either the molecular or cellular level. In the last 10 years, data has emerged implicating professional phagocytes, most notably stromal macrophages and CD8α+CD103+ dendritic cells, as critical in initiation of the regulatory cascade that will ultimately lead to long-term whole-animal immune tolerance. Importantly, recent work by our lab and others has shown that alterations in apoptotic cell perception by the innate immune system either by removal of critical phagocytic sentinels in secondary lymphoid organs or blockage of immunosuppressive pathways leads to pronounced inflammation with a breakdown of tolerance towards self. This challenges the paradigm that apoptotic cells are inherently immunosuppressive, suggesting that apoptotic cell tolerance is a “context-dependent” event.  相似文献   

19.
In contrast to antibodies, which recognize antigens in native form, αβ T cell receptors (TCRs) only recognize antigens as peptide fragments bound to MHC molecules, a feature known as MHC restriction. The mechanism by which MHC restriction is imposed on the TCR repertoire is an unsolved problem that has generated considerable debate. Two principal models have been advanced to explain TCR bias for MHC. According to the germline model, MHC restriction is intrinsic to TCR structure because TCR and MHC molecules have co-evolved to conserve germline-encoded TCR sequences with the ability to bind MHC, while eliminating TCR sequences lacking MHC reactivity. According to the selection model, MHC restriction is not intrinsic to TCR structure, but is imposed by the CD4 and CD8 co-receptors that promote signaling by delivering the Src tyrosine kinase Lck to TCR–MHC complexes through co-receptor binding to MHC during positive selection. Here, we review the evidence for and against each model and conclude that both contribute to determining TCR specificity, although their relative contributions remain to be defined. Thus, TCR bias for MHC reflects not only germline-encoded TCR–MHC interactions but also the requirement to form a ternary complex with the CD4 or CD8 co-receptor that is geometrically competent to deliver a maturation signal to double-positive thymocytes during T cell selection.  相似文献   

20.
This study has been carried out in order to investigate seasonal variation in peripheral blood immune cells, such as leukocytes, monocytes, neutrophils, lymphocytes, CD3+ T, CD4+ T, CD8+ t, CD25+ T, CD20+ B, and serum interleukin-6 (IL-6), soluble IL-6 receptor (sIL-6R) and sIL-2R levels in normal volunteers. Toward this end, 26 normal volunteers (13 men, 13 women) had monthly blood samplings during one calendar year for peripheral blood count, flow cytometric enumeration of peripheral leukocyte subsets and immunoassays of IL-6, sIL-6R and sIL-2R. It was found that most of the immune variables change rhythmically during the seasons as a group phenomenon. Statistically significant yearly variations with seasonal rhythms, i.e. annual rhythms or harmonics, such as semiannual, tetramensual and trimensual rhythms, were found in the number of leukocytes, neutrophils, monocytes, lymphocytes, CD4+ T, CD8+ T, CD25+ T, CD20+ B cells, in the CD4+/CD8+ ratio, and serum IL-6 and sIL-6R levels. It is concluded that the immune system is characterized by a multifrequency time-structure with significant high-amplitude yearly variations in the number of some peripheral blood leukocyte subsets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号