共查询到17条相似文献,搜索用时 42 毫秒
1.
证明了带变量核的Marcinkiewicz积分算子和局部可积有限函数列 相似文献
2.
证明了带变量核分数次Marcinkiewicz积分μΩ,α在Hardy空间及Herz型Hardy空间上的有界性。利用Hardy空间及Herz型Hardy空间的原子分解定理,得到了在核函数Ω满足一定条件下算子μΩ,α的H1,Lnn-α型和(Hp,Lq)型以及从Herz型Hardy空间到Herz空间的有界性结论。 相似文献
3.
借助于Herz型Hardy空间上的原子分解理论, 以及Herz空间的概念, 利用满足对数型Lipschitz条件的Marcinkiewicz积分交换子的(q,q)有界性, 得到了这类Marcinkiewicz积分交换子从Herz型Hardy空间到Herz空间的有界性。 此结果丰富了Marcinkiewicz积分算子理论的内容。 相似文献
4.
主要讨论一类带可变核奇异积分算子的交换子Tbf(x)=p.v.Rn∫K(x,x-y)(b(x)-b(y))f(y)dy从齐次Herz型Hardy空间HKq,bn(1-1/q)+δ,p(Rn)到齐次弱Herz型空间WKnq(1-1/q)+δ-β,p(Rn)的有界性,及从齐次Herz型Hardy空间HKq,bα,p(Rn)到齐次Herz型空间Kqα-β,p(Rn)的有界性. 相似文献
5.
本文证明了交换子μΩ,b从加权Herz型Hardy空间HKn(1-1/q),pq(ω1,ω2)到弱加权Herz空间WKn(1-1/q),pq(ω1,ω2)的有界性,其中0
相似文献
6.
研究带变量核的Marcinkiewicz积分与Lipschitz函数生成的交换子μ_Ω~b的有界性,应用原子分解理论及核函数Ω的性质,证明了μ_Ω~b是Herz型Hardy空间到弱Herz空间上的有界算子. 相似文献
7.
设[b,T]表示由Lipschitz函数b∈Lipβ(Rn)与满足一定光滑条件的带θ型核的线性算子T生成的交换子,本文研究这类算子在Hardy空间和Herz型Hardy空间上的有界性问题.利用Hardy空间和Herz型Hardy空间的原子分解,证明了当nn+β
相似文献
8.
证明了带变量核的Marcinkiewicz积分交换子μΩ,b在加权弱Hardy空间上的有界性。利用加权弱Hardy空间上的原子分解理论,得到了核函数满足一定条件下μΩ,b的有界性结论,这里b∈BMO。同时,得到了与参数型的Marcinkiewicz积分交换子μρΩ,b类似的结果。 相似文献
9.
讨论了带变量核的Marcinkiewicz积分算子的高阶交换子的一些性质,利用分析中不等式方法,得到了这类算子交换子μΩ,bm是(Hbm1,∞,L1,∞)型的,此处b是BMO函数. 相似文献
10.
邵旭馗 《吉林大学学报(理学版)》2002,57(4):767-772
借助Marcinkiewicz积分交换子在变指标Lebesgue空间上的有界性, 利用变指标Herz-Hardy空间上的原子分解理论, 给出带变量核的Marc
inkiewicz积分交换子μbΩ在齐次和非齐次变指标Herz-Hardy空间上的有界性. 相似文献
11.
一类Marcinkiewicz积分交换子的加权有界性 总被引:1,自引:0,他引:1
借助于原子Hardy空间理论,利用Marcinkiewicz积分交换子的加权Lp有界性,证明了某种关于核的对数型Lipschitz条件下,带零次齐次核的Marcinkiewicz积分交换子是从H1(Rn)到Ln/(n-β)(Rn)有界的。 相似文献
12.
黄元 《安庆师范学院学报(自然科学版)》2009,15(3):21-24
在本文中,讨论了带可变核参数型Marcinkiewicz积分μ^ρΩ(0〈ρ〈n),证明了该积分从H^1,∞(R^n)到L^1,∞(R^n)的有界性。 相似文献
13.
证明Marcinkiewicz积分μΩ与b∈∧β(R^n)生成的Marcinkiewicz积分交换子μΩb是从HKq1^n(1-1/q1)+β,p (R^n)到WKq2^n(1-1/q1)+β,p (R^n)上的有界算子. 相似文献
14.
利用加权Herz型Hardy空间的原子分解,借助于加权Lp有界性的结论,证明了可变核Marcinkiewicz积分和Lipschitz函数生成的交换子μΩ,b是从加权Herz型Hardy空间到加权Herz空间有界的。 相似文献
15.
研究了由一类超奇异的Marcinkiewicz积分和Lipβ(R^n)(0〈β≤1)函数生成的交换子μΩ.ρ^b.证明了当可变核Ω(x,z)∈L^∞(R^n)×L^r(S^n-1)(r〉2(n-1)/n)时,交换μΩ.ρ^b在齐次Morrey-Herz空间MKp,q^α,λ(R^n)上的有界性,同时建立了参数型Marcinkiewicz积分交换子μΩ.ρ^b,σ在齐次Morrey—Herz空间上的有界性,拓宽了以往的结果. 相似文献
16.
TΩ,α(0〈α〈1)是带可变核Ω(x,z)的分数次积分算子,[b,TΩ,α]是由TΩ,α和b∈Lipβ(Rn)生成的交换子。对Ω(x,z)∈L∞(Rn)×L2(Sn-1)时,利用原子分解和分子分解理论给出了交换子[b,TΩ,α]的(Hp,Hq)有界性。 相似文献
17.
通过Hardy空间的原子分解的性质及Lp空间的有界性,证明了齐型空间中多线性奇异积分算子构成的交换子的(Hpb,Lp)有界性,从而推广了欧氏空间的性质. 相似文献