首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The myelin proteolipid protein (PLP) gene (Plp) encodes the most abundant protein found in myelin from the central nervous system (CNS). Expression of the gene is regulated in a spatiotemporal manner with maximal levels of expression occurring in oligodendrocytes during the active myelination period of CNS development, although other cell types in the CNS as well as in the periphery can express the gene to a much lower degree. In oligodendrocytes, Plp gene expression is tightly regulated. Underexpression or overexpression of the gene has been shown to have adverse effects in humans and other vertebrates. In light of this strict control, this review provides an overview of the current knowledge of Plp gene regulation.Received 4 August 2003; received after revision 17 September 2003; accepted 24 September 2003  相似文献   

2.
Myelin basic protein: a multifunctional protein   总被引:1,自引:1,他引:0  
Myelin basic protein (MBP), the second most abundant protein in central nervous system myelin, is responsible for adhesion of the cytosolic surfaces of multilayered compact myelin. A member of the ‘intrinsically disordered’ or conformationally adaptable protein family, it also appears to have several other functions. It can interact with a number of polyanionic proteins including actin, tubulin, Ca2+-calmodulin, and clathrin, and negatively charged lipids, and acquires structure on binding to them. It may act as a membrane actin-binding protein, which might allow it to participate in transmission of extracellular signals to the cytoskeleton in oligodendrocytes and tight junctions in myelin. Some size isoforms of MBP are transported into the nucleus and thus they may also bind polynucleotides. Extracellular signals received by myelin or cultured oligodendrocytes cause changes in phosphorylation of MBP, suggesting that MBP is also involved in signaling. Further study of this very abundant protein will reveal how it is utilized by the oligodendrocyte and myelin for different purposes. Received 2 March 2006; received after revision 12 April 2006; accepted 16 May 2006  相似文献   

3.
4.
Alexander disease: putative mechanisms of an astrocytic encephalopathy   总被引:7,自引:1,他引:6  
Alexander disease (AXD) is the first primary astrocytic disorder. This encephalopathy is caused by dominant mutations in the glial fibrillary acidic protein (GFAP) gene, encoding the main intermediate filament of astrocyte. Pathologically, this neurodegenerative disease is characterised by dystrophic astrocytes containing intermediate filament aggregates associated with myelin abnormalities.More than 20 GFAP mutations have been reported. Many of them cluster in highly conserved regions between several intermediate filaments. Contrary to other intermediate filament-related diseases, AXD seems to be the consequence of a toxic gain of function induced by aggregates. This is supported by the phenotype of mice overexpressing human GFAP. Nevertheless, GFAP null mice display myelin abnormalities and blood-brain barrier dysfunction that are present in AXD.Given the pivotal role of astrocytes in brain physiology, there are many possibilities for astrocytes to dysfunction and to impair the functions of other cells. Physiopathological hypotheses are discussed in the frame of AXD.Received 11 April 2003; received after revision 22 July 2003; accepted 31 July 2003Both authors contributed equally to this work.  相似文献   

5.
Giant axonal neuropathy (GAN) is a rare autosomal recessive disorder affecting both the central and peripheral nervous systems. Cytopathologically, the disorder is characterized by giant axons with derangements of cytoskeletal components. Geneticists refined the chromosomal interval containing the locus, culminating in the cloning of the defective gene, GAN. To date, many distinct mutations scattered throughout the coding region of the locus have been reported by researchers from different groups around the world. GAN encodes the protein, gigaxonin. Recently, a genetic mouse model of the disease was generated by targeted disruption of the locus. Over the years, the molecular mechanisms underlying GAN have attracted much interest. Studies have revealed that gigaxonin appears to play an important role in cytoskeletal functions and dynamics by directing ubiquitin-mediated degradations of cytoskeletal proteins. Aberrant accumulations of cytoskeletal-associated proteins caused by a defect in the ubiquitinproteasome system (UPS) have been shown to be responsible for neurodegeneration occurring in GAN-null neurons, providing strong support for the notion that UPS plays crucial roles in cytoskeletal functions and dynamics. However, many key questions about the disease remain unanswered. Received 6 September 2006; received after revision 11 October 2006; accepted 5 December 2006 Y. Yang, E. Allen The authors contributed equally to this work.  相似文献   

6.
Corticotropin-releasing factor (CRF), also termed corticotropin-releasing hormone (CRH) or corticoliberin, is the major regulator of the adaptive response to internal or external stresses. An essential component of the adaptation mechanism is the adrenal gland. CRF regulates adrenal function indirectly through the central nervous system (CNS) via the hypothalamic-pituitary-adrenal (HPA) axis and via the autonomic nervous system by way of locus coeruleus (LC) in the brain stem. Accumulating evidence suggests that CRF and its related peptides also affect the adrenals directly, i.e. not through the CNS but from within the adrenal gland where they form paracrine regulatory loops. Indeed, CRF and its related peptides, the urocortins (UCNs: UCN1, UCN2 and UCN3), their receptors CRF type 1 (CRF1) and 2 (CRF2) as well as the endogenous pseudo-receptor CRF-binding protein (CRF-BP) are all expressed in adrenal cortical, medullary chromaffin and resident immune cells. The intra-adrenal CRF-based regulatory system is complex and depends on the balance between the local concentration of CRF ligands and the availability of their receptors. Received 19 December 2006; received after revision 20 February 2007; accepted 26 March 2007  相似文献   

7.
Myelin sheaths are formed around axons by extending, biochemically modifying and spiraling plasma membranes of Schwann cells in the peripheral nervous system (PNS) and oligodendrocytes in the central nervous system (CNS). Because glycoproteins are prominent components of plasma membranes, it is not surprising that they have important roles in the formation, maintenance and degeneration of myelin sheaths. The emphasis in this review is on four integral membrane glycoproteins. Two of them, protein zero (P0) and peripheral myelin protein-22 (PMP-22), are components of compact PNS myelin. The other two are preferentially localized in membranes of sheaths that are distinct from compact myelin. One is the myelin-associated glycoprotein, which is localized at the inside of sheaths where it functions in glia-axon interactions in both the PNS and CNS. The other is the myelin-oligodendrocyte glycoprotein, which is preferentially localized on the outside of CNS myelin sheaths and appears to be an important target antigen in autoimmune demyelinating diseases such as multiple sclerosis. Received 8 April 2002; received after revision 13 May 2002; accepted 22 May 2002  相似文献   

8.
New developments in the biological functions of lysophospholipids   总被引:4,自引:0,他引:4  
Lysophospholipids have long been recognized as membrane phospholipid metabolites, but only recently has their role as intercellular signaling molecules been appreciated. Two of the best-studied lysophospholipids, LPA and S1P, signal through cognate G-protein-coupled receptors to activate many well-known intracellular signaling pathways, leading to a variety of biologically important cell responses. Lysophospholipids and their receptors have been found in a wide range of tissues and cell types, indicating their importance in many physiological processes, including reproduction, vascular development, cancer and nervous system function. This article will focus on the most recent findings regarding the biological functions of lysophospholipids in mammalian systems, specifically as they relate to health and disease. Received 5 April 2006; received after revision 22 June 2006; accepted 9 August 2006  相似文献   

9.
Lymphocytes, the principal cells of the immune system, carry out immune surveillance throughout the body by their unique capacity to constantly reposition themselves between a free-floating vascular state and a tissue state characterized by migration and frequent adhesive interactions with endothelial cells and components of the extracellular matrix. Therefore, mechanisms co-ordinating adhesion and migration with signals delivered through antigen recognition probably play a pivotal role for the regulation of lymphocyte behaviour and function. Endogenous thrombospondin-1 (TSP-1) seems to be the hub in such a mechanism for autocrine regulation of T cell adhesion and migration. TSP-1 functions as a mediator of cis interaction of vital receptors within the T lymphocyte plasma membrane, including integrins, low density lipoprotein receptor-related protein, calreticulin and integrin-associated protein. Received 1 June 2006; received after revision 28 June 2006; accepted 11 October 2006  相似文献   

10.
The lysosomal storage disorders encompass more than 40 distinct diseases, most of which are caused by the deficient activity of a lysosomal hydrolase leading to the progressive, intralysosomal accumulation of substrates such as sphingolipids, mucopolysaccharides, and oligosaccharides. Here, we primarily focus on Gaucher disease, one of the most prevalent lysosomal storage disorders, which is caused by an impaired activity of glucocerebrosidase, resulting in the accumulation of the glycosphingolipid glucosylceramide in the lysosomes. Enzyme replacement and substrate reduction therapies have proven effective for Gaucher disease cases without central nervous system involvement. We discuss the promise of chemical chaperone therapy to complement established therapeutic strategies for Gaucher disease. Chemical chaperones are small molecules that bind to the active site of glucocerebrosidase variants stabilizing their threedimensional structure in the endoplasmic reticulum, likely preventing their endoplasmic reticulum-associated degradation and allowing their proper trafficking to the lysosome where they can degrade accumulated substrate to effectively ameliorate Gaucher disease. Received 22 September 2005; received after revision 15 December 2006; accepted 2 February 2006  相似文献   

11.
Lactate oxidase is used in biosensors to measure the concentration of lactate in the blood and other body fluids. Increasing the thermostability of lactate oxidase can significantly prolong the lifetime of these biosensors. We have previously obtained a variant of lactate oxidase from Aerococcus viridans with two mutations (E160G/V198I) that is significantly more thermostable than the wild-type enzyme. Here we have attempted to further improve the thermostability of E160G/V198I lactate oxidase using directed evolution. We made a mutant lactate oxidase gene library by applying error-prone PCR and DNA shuffling, and screened for thermostable mutant lactate oxidase using a plate-based assay. After three rounds of screening we obtained a thermostable mutant lactate oxidase, which has six mutations (E160G/V198I/G36S/T103S/A232S/F277Y). The half-life of this lactate oxidase at 70 °C was about 2 times that of E160G/V198I and about 36 times that of the wild-type enzyme. The amino acid mutation process suggests that the combined neutral mutations are important in protein evolution. Received 15 September 2006; received after revision 21 October 2006; accepted 2 November 2006  相似文献   

12.
Phosphopeptides interacting with src homology 2 (SH2) domains can activate essential signaling enzymes in vitro. When delivered to cells, they may disrupt protein-protein interactions, thereby influencing intracellular signaling. We showed earlier that phosphopeptides corresponding to the inhibitory motif of Fcγ receptor IIb and a motif of the Grb2-associated binder 1 adaptor protein activate SH2-containing tyrosine phosphatase 2 in vitro. To study the ex vivo effects of these peptides, we have now compared different methods for peptide delivery: (i) permeabilization of the target cells and (ii) the use of cell-permeable vectors, which are potentially able to transport biologically active compounds into B cells. We found octanoyl-Arg8 to be an optimal carrier for the delivery of phosphopeptides to the cells. With this strategy, the function of cell-permeable SHP-2-binding phosphopeptides was analyzed. These peptides modulated the protein phosphorylation in B cells in a dose- and time-dependent manner. Received 27 July 2006; received after revision 4 September 2006; accepted 18 September 2006  相似文献   

13.
Multipotent adult stem cells capable of developing into particular neuronal cell types have great potential for autologous cell replacement therapy for central nervous system neurodegenerative disorders and traumatic injury. Bone marrow-derived stromal mesenchymal stem cells (BMSCs) appear to be attractive starting materials. One question is whether BMSCs could be coaxed to differentiate in vitro along neuronal or glial lineages that would aid their functional integration post-transplantation, while reducing the risk of malignant transformation. Recent works suggest that BMSCs could indeed be differentiated in vitro to exhibit some cellular and physiological characteristics of neural cell lineages, but it is not likely to be achievable with simple chemical treatments. We discussed recent findings pertaining to efforts in neuronal differentiation of BMSCs in vitro, and results obtained when these were transplanted in vivo. Received 19 January 2006; received after revision 24 February 2006; accepted 12 April 2006  相似文献   

14.
Tauopathies are a group of neurodegenerative diseases characterised by intracellular deposits of the microtubule-associated protein tau. The most typical example of a tauopathy is Alzheimer’s disease. The importance of tau in neuronal dysfunction and degeneration has been demonstrated by the discovery of dominant mutations in the MAPT gene, encoding tau, in some rare dementias. Recent developments have shed light on the significance of tau phosphorylation and aggregation in pathogenesis. Furthermore, emerging evidence reveals the central role played by tau pre-mRNA processing in tauopathies. The present review focuses on the current understanding of tau-dependent pathogenic mechanisms and how realistic therapies for tauopathies can be developed. Received 3 December 2006; received after revision 23 February 2007; accepted 20 March 2007  相似文献   

15.
Presenilin-2 (PS2) is one of three genes [amyloid precursor protein (APP), presenilin-1 (PS1) and PS2] shown to cause familial Alzheimer's disease (FAD), and is highly homologous to PS1. Currently demonstrated functions of PS2 include interactions with APP and Aβ, and participation in apoptotic pathways. PS2 FAD mutations influence APP processing in a manner predicted to promote amyloid formation and also enhance the proapoptotic effect of wild-type PS2. Other possible functions of PS2 are related to its homology to Notch pathway genes in Caenorhabditis elegans, suggesting it may have a developmental role. PS2-associated AD is the most reminiscent of the sporadic form of the disease in terms of older age of onset and longer disease duration. Since PS2 mutations are incompletely penetrant and age of onset in carriers is highly variable (40 – 88 years), elucidation of PS2 mechanisms may reveal factors which modify AD and are therapeutically relevant to sporadic AD.  相似文献   

16.
Rapid nerve conduction requires the coating of axons by a tightly packed multilayered myelin membrane. In the central nervous system, myelin is formed from cellular processes that extend from oligodendrocytes and wrap in a spiral fashion around an axon, resulting in the close apposition of adjacent myelin membrane bilayers. In this review, we discuss the physical principles underlying the zippering of the plasma membrane of oligodendrocytes at the cytoplasmic and extracellular leaflet. We propose that the interaction of the myelin basic protein with the cytoplasmic leaflet of the myelin bilayer triggers its polymerization into a fibrous network that drives membrane zippering and protein extrusion. In contrast, the adhesion of the extracellular surfaces of myelin requires the down-regulation of repulsive components of the glycocalyx, in order to uncover weak and unspecific attractive forces that bring the extracellular surfaces into close contact. Unveiling the mechanisms of myelin membrane assembly at the cytoplasmic and extracelluar sites may help to understand how the myelin bilayers are disrupted and destabilized in the different demyelinating diseases.  相似文献   

17.
Summary Reactivation effects by glycerol and ethylene glycol of inactivated ALA synthetase ofR. spheroides were observed. Accompanying the reactivation of the inactivated enzyme, K m value for PLP decreased to levels similar to those of the freshly prepared enzyme.  相似文献   

18.
Summary The myelin fraction of rat brain stem was treated with butanol-water mixtures, and the extracted proteolipids were separated by Sephadex LH20 column chromatography. 2 peaks of proteolipids eluted in chloroform-methanol 4/1 showed the binding capacity for C14·5-HT. This finding suggests the necessity of the more careful investigations for the probability of proteolipids as receptor proteins in the central nervous system.  相似文献   

19.
Pex19p exhibits a broad binding specificity for peroxisomal membrane proteins (PMPs), and is essential for the formation of functional peroxisomal membranes. Pex19p orthologues contain a C-terminal CAAX motif common to prenylated proteins. In addition, Saccharomyces cerevisiae and Chinese hamster Pex19p are at least partially farnesylated in vivo. Whether farnesylation of Pex19p plays an essential or merely ancillary role in peroxisome biogenesis is currently not clear. Here, we show that (i) nonfarnesylated and farnesylated human Pex19p display a similar affinity towards a select set of PMPs, (ii) a variant of Pex19p lacking a functional farnesylation motif is able to restore peroxisome biogenesis in Pex19p-deficient cells, and (iii) peroxisome protein import is not affected in yeast and mammalian cells defective in one of the enzymes involved in the farnesylation pathway. Summarized, these observations indicate that the CAAX box-mediated processing steps of Pex19p are dispensable for peroxisome biogenesis in yeast and mammalian cells. Received 10 March 2006; received after revision 28 April 2006; accepted 30 May 2006  相似文献   

20.
The preform of the rabbit sterol carrier protein 2 (pre-rSCP2) was cloned, the uniformly 15N-labelled protein expressed in Escherichia coli and studied by three-dimensional 15N-resolved nuclear magnetic resonance spectroscopy. In spite of its low solubility in aqueous solution of only ∼0.3 mM, sequential 15N and 1H backbone resonance assignments were obtained for 105 out of the 143 residues. From comparison of the sequential and medium-range nuclear Overhauser effects (NOEs) in the two proteins, all regular secondary structures previously determined in mature human SCP2 (hSCP2) [Szyperski et al. (1993) FEBS Lett. 335: 18–26] were also identified in pre-rSCP2. Near-identity of the backbone 15N and 1H chemical shifts and 1 : 1 correspondence of 24 long-range NOEs to backbone amide groups in the two proteins show that the residues 21 – 143 adopt the same globular fold in pre-rSCP2 and mature hSCP2. The N-terminal 20-residue leader peptide of pre-rSCP2 is flexibly disordered in solution and does not observably affect the conformation of the polypeptide segment 21 – 143. Received 11 May 1998; accepted 15 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号