首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出一种求解Riesz空间分布阶的分数阶扩散方程的数值方法.利用辛普森数值求积公式,将分布阶微分方程离散为一个多项分数阶导数的微分方程;利用四阶差分格式求解此具有多项分数阶导数的微分方程,并运用能量法分析数值格式的稳定性和收敛性.同时,给出数值例子,说明所建立的数值离散格式的有效性.  相似文献   

2.
通过对空间分数阶导数采用修正的Grunwaid有限差分逼近,给出了数值求解时间-空间分数阶导数对流扩散方程的一种隐式差分格式.证明了格式的兼容性、无条件稳定性及一阶收敛性,并给出了数值算例.  相似文献   

3.
对严格的时间分数阶对流--弥散方程和严格的空间分数阶对流--弥散方程分别建立了差分格式,并用所建立的两个差分格式对同一理想算例进行了求解.通过对分数阶导数取不同的参数值,得到一系列结果,分析了不同分数阶导数描述的反常扩散现象及其变化规律,并和传统的整数阶对流--弥散方程的求解结果进行了对比.当时间分数阶对流--弥散方程和空间分数阶对流--弥散方程的分数阶导数的参数分别取整数值时,时间分数阶对流--弥散方程、空间分数阶对流--弥散方程和传统整数阶对流--弥散方程的计算结果相同,表明本文提出的对时间分数阶对流--弥散方程和空间对流--弥散方程数值求解方法是可行的,且整数阶对流--弥散方程是分数阶对流--弥散方程的特殊情况.和正常扩散相比,时间分数阶对流--弥散方程中分数阶导数的参数值越小,溶质扩散得越慢,表现为拖尾分布:空间分数阶对流--弥散方程中分数阶导数的参数值越小,溶质扩散得越快,表明空间的非局域性相关性越强.  相似文献   

4.
《河南科学》2016,(2):171-174
给出求解一类时间分数阶延迟扩散微分方程的数值解法,方程中对时间的一阶导数利用分数阶α(0α1)阶导数代替,构造了求解该微分方程的差分格式,并对收敛性和稳定性进行证明,数值算例检验该格式解决此类方程是有效的.  相似文献   

5.
扩散方程在物理领域常用来模拟不同物质间的相互扩散现象,多项时间分数阶扩散方程能更清晰地反应复杂系统的物理意义.本文对两项时间分数阶扩散方程中的分数阶导数直接进行离散,空间导数采用中心差分格式进行离散,提出了求解两项时间分数阶扩散方程的一个隐式差分格式;讨论了分数阶扩散方程差分解的存在唯一性,证明了差分格式的稳定性及收敛性;最后数值试验验证了格式的有效性.  相似文献   

6.
介绍求解多项四阶时间分数阶慢扩散方程的有限差分方法.利用L1公式逼近时间分数阶导数,用降阶法处理空间四阶导数项,再借助离散能量方法证明差分格式是无条件稳定的且在无穷范数下其收敛阶为O(t^(2-B)+h^2),其中t和h分别为时间方向和空间方向的步长,B是时间分数导数的最大阶.最后用数值实验验证所提出差分格式的精度和有效性.  相似文献   

7.
研究时空分数阶扩散方程的高阶快速数值算法。在时间上,取α(α∈(0,1))阶Caputo分数阶导数,在空间上,取β(β∈(1,2))阶Riesz分数阶导数。首先,在时间离散上使用了一个(3-α)阶一致收敛的格式,在空间上利用加权移位的Grünwald-Letnikov公式对空间部分进行离散;其次,分析格式的系数矩阵结构满足Toeplitz矩阵,利用快速Fourier变换结合FGMRES方法建立求解时空分数阶的快速计算方法;最后,给出数值结果,结果表明本文的数值格式是有效的。  相似文献   

8.
针对非线性变阶空间-时间分数阶对流-扩散方程的初边值问题,提出一种全隐式有限差分格式.首先,分别对Riemann-Liouville型变时间分数阶导数算子和Riemann-Liouville型变空间分数阶导数算子和广义Riesz分数阶导数算子进行离散化处理;然后,通过离散的能量方法证明全隐式有限差分格式的稳定性和收敛性,并验证其收敛阶为O(τ+h);最后,通过数值算例检验该方法.试验结果表明:全隐式有限差分格式求解非线性变阶空间-时间分数阶对流-扩散方程初边值问题是可行和有效的.  相似文献   

9.
研究了一维时间-空间双边分数阶扩散方程的求解与微分阶数的数值反演问题.基于Caputo意义下时间分数阶导数和Grünward-Letnikov意义下空间双边分数阶导数的离散,给出了一个有限差分求解格式,证明了其稳定性和收敛性.分别基于终值数据及区域中点处的观测值作为附加数据,应用同伦正则化算法对微分阶数进行数值反演.反演结果表明同伦正则化算法对于分数阶扩散方程的微分阶数反演是有效的.  相似文献   

10.
在有限区域内考虑具有初边值问题的Riesz空间分数阶扩散方程,传统扩散方程中的二阶空间导数由Riesz分数阶导数α(1<α≤2)代替就得到Riesz空间分数阶扩散方程.我们提出一个在时间和空间都具有二阶精度的隐式方法,这个方法基于古典的Crank-Nicholson方法与空间外推方法,该隐式方法是无条件稳定和收敛的.最后给出一些数值例子来证实格式是高阶收敛的,此技巧可应用于解其它分数阶微分方程.  相似文献   

11.
介绍求解多项四阶时间分数阶慢扩散方程的有限差分方法.利用L1公式逼近时间分数阶导数,用降阶法处理空间四阶导数项,再借助离散能量方法证明差分格式是无条件稳定的且在无穷范数下其收敛阶为O(τ2-β+h2),其中τ和h分别为时间方向和空间方向的步长,β是时间分数导数的最大阶.最后用数值实验验证所提出差分格式的精度和有效性.  相似文献   

12.
利用非标准有限差分法给出了求解一类时间分数阶线性扩散方程的一种数值解法.对时间分数阶导数和整数阶空间导数离散后的差分近似过程中,对分母构造了一个关于时间步长和空间步长的函数来近似,证明了该差分格式是收敛和稳定的,通过数值算例验证该方法是有效的.  相似文献   

13.
刘明鼎  张艳敏 《河南科学》2014,(9):1688-1691
给出了求解一类时间分数阶时滞微分方程的数值解法,将传统对时间的一阶导数利用分数阶导数α(0α1)阶导数代替,给出了求解微分方程的差分格式,并对差分格式证明了收敛性和稳定性,数值算例检验该格式解决此类方程是有效的.  相似文献   

14.
提出一种带有Caputo导数的时间分数阶变系数扩散方程的数值解法.方程的解在初始时刻附近通常具有弱正则性,采用非一致网格上的L1公式离散时间分数阶导数,并使用局部间断Galerkin (local discontinuous Galerkin, LDG)方法离散空间导数,给出方程的全离散格式.基于离散的分数阶Gronwall不等式,证明了格式的数值稳定性和收敛性,且所得结果关于α是鲁棒的,即当α→1-时不会发生爆破.最后,通过数值算例验证理论分析的结果.  相似文献   

15.
在时间上使用Caputo型分数阶导数,在空间上使用Riemann-Liouville型分数阶导数,研究时空分数阶扩散方程的高效数值算法。首先,在时间上使用了一个一致收敛的高阶数值离散格式和在空间上利用移位的Grünwald-Letnikov公式进行离散;其次,分析离散化代数方程组的系数矩阵结构,利用快速Fourier变换和GMRES迭代法建立求解时空分数阶的快速计算方法;最后,给出的数值结果表明,本文的数值格式是有效的。  相似文献   

16.
考虑一般的对流扩散方程,将一阶的时间导数用Caputo分数阶导数替换,二阶的空间导数用Riemann-Liouville分数阶导数替换,得到了一个Riemann-Liouville-Caputo分数阶对流扩散方程.给出了这个方程的一种计算有效的隐式差分格式,并证明了该差分格式是无条件稳定、无条件收敛的,其收敛阶为O(l+h).最后给出了数值例子.  相似文献   

17.
郭非凡  张新东  王硕 《河南科学》2019,37(6):878-886
近些年,越来越多的研究表明,随着时间或者空间变化,方程的扩散系数也会改变.主要研究了变系数分数阶扩散方程的有限差分解法.首先,引入半整数点,在空间网格上进行对偶剖分,再通过差分方法离散空间二阶偏导数.其次,利用两种分数阶导数,即Grünwald-Letnikov导数与Caputo导数的关系,近似替代时间分数阶导数,从而得到了收敛精度为o(t+h~2)的有限差分格式,并且该有限差分格式的解是存在且唯一的.最后,通过利用数学归纳法和最大模方法,证明出差分格式的稳定性和收敛性,并用一个一维时间分数阶变系数扩散方程的数值算例来验证差分格式的收敛阶.  相似文献   

18.
讨论一个二维调和分数阶扩散方程,其中的调和分数阶导数是分数阶导数的推广,可模拟粒子在早期的超扩散向后期的次扩散的渐进行为.采用隐式交替方向法(ADI)和Crank-Nicolson(C-N)格式建立方程的数值离散格式,并采用外推法得到差分格式的二阶精度,运用矩阵分析的方法给出稳定性和收敛性的证明,同时给出一个数值例子说明所建立的数值离散格式的有效性.  相似文献   

19.
Riesz空间分数阶对流扩散方程是从混沌动力系统导出的.继续Ilic,Liu等的工作,我们提出在有界区域内求解Riesz空间分数阶对流-扩散方程的一种新的计算有效方法.即基于这两个Riesz空间分数阶导数的矩阵表示.这个方法的创新在于这个算子的标准离散得到包含具有相同分数次幂的矩阵的一个常微分方程组,并利用计算有效的分数阶行方法求解.同时借助于分数阶导数的谱表示和拉普拉斯变换,导出这个Riesz空间分数阶对流扩散方程的解析解.最后给出了数值例子来证实数值方法的有效性.  相似文献   

20.
利用内嵌物理信息神经网络方法(PINN)求解一类具有分数拉普拉斯算子的空间分数阶扩散方程,获得分数阶偏微分方程的数值解。首先将分数阶导数项采用有限差分离散算子后嵌入PINN进行求解,并借助自动微分技术进行求导;然后建立了训练误差函数,并给出方程初边值问题的相关算法,分析了神经网络的学习速率和数值误差;其次,给出数值例子,验证了用该方法求解空间分数阶扩散方程的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号