首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 359 毫秒
1.
利用演化算符作泰勒展开,作用于初态的信息上;使用湮灭算符和其所产生的算符,作用在单比特态上,使一维量子点阵列自旋链上的多比特态量子信息实现完美传输;通过计算初态演化到末态的概率幅,使保真度达到1时实现信息完美传输.结果表明:当相邻量子点之间的交换相互作用和自旋链长度都相同时,保真度传输的比特数越大,传输时间越短.   相似文献   

2.
对于在自旋链上进行传输的单比特量子信息而言,若其哈密顿量是经修正的Heisernberg–XX模型,信息的完美传输则仅仅取决于系统自身的动力学演化,即完美传输的条件只由传输时间决定,与链的长度无关.以此为基础,给此自旋链施加一合适的恒定磁场,则实现量子信息完美传输的条件不仅取决于自旋链自身的长度,而且还将由磁场所决定.进而可以通过传输时间t与自旋链长度N以及磁场B的关系控制实现量子信息完美传输的传输时间.  相似文献   

3.
分析了量子态在包括长程相互作用自旋系统中的传输过程,分自旋传输系统处于基态和热平衡态两种不同情形进行讨论.通过自旋系统随时间的自由演化,不需要对系统进行其它的操作,就可以实现量子态从自旋链一端向另一端的传输.再选择合适的时间进行测量,可以提取得到保真度接近1的量子态.初始时刻自旋系统处于基态时,保真度随着测量时间呈准周期变化,并在0.5~1之间震荡.当自旋传输系统处于热平衡态时,最大保真度随着温度的降低而升高.无论体系初始时刻是处于基态还是处于热平衡态,当系统处于适当的外加恒定磁场中,传输效率都会提高.  相似文献   

4.
分析了含能流的横磁场三比特各向同性XY自旋链的基态纠缠.发现随着外磁场的变化,系统会发生量子相变.以三比特系统为例给出有效哈密顿量的能谱,讨论了体系基态纠缠随λ的变化.当λ<3/3时,在相变点处基态由W态跳跃到非纠缠态,此时自旋链中没有能量流动.当3/3≤λ≤3时,在能级交错点处发生量子相变,体系由非能流相进入能流相,同时基态由W态ф1跳跃到另一W态ф5;此时,由于能流的影响,使得基态保持在W态,而不再处于非纠缠态;并且随着λ的增大,系统将在更大范围内处于能流相.当λ>3时,基态波函数表示为ф5,系统完全处于能流相.  相似文献   

5.
为了实现经济的控制隐形传态,提出一种利用2个部分纠缠EPR对实现3粒子GHZ态的概率隐形传输方案.该方案首先需要发送者向控制者申请量子信道,若控制者同意,才能通过纠缠交换,使发送者和接收者之间建立量子信道.然后发送者进行一次Bell基联合测量、两次H变换和两次单粒子测量.接收者根据发送者和控制者的测量结果,引入辅助粒子,进行两次控制非门操作和相应的幺正变换,就可以得到原始未知信息态的信息,传输成功的概率为4|a|~2|c|~2.该方案可以推广到N粒子GHZ态的控制隐形传输.若增加到N个EPR对为量子信道,还可以推广到(N-1)个控制者参与的N粒子GHZ态的控制隐形传输.该方案可以很好的应对一般的窃听方式.  相似文献   

6.
量子计算科学是近年来物理学领域最活跃的研究前沿之一,其开拓了与经典方式具有本质区别的全新的信息处理模式.量子计算研究的根本目标是建造基于量子力学基本原理的量子信息处理技术,能在许多复杂计算问题上大大超越经典计算性能的新型计算模式.量子计算需要一个良好的量子体系作为载体.基于自旋的量子体系由于其实用的可操作性,成为量子计算载体的优秀候选.自旋的所有量子性质表现在自旋的叠加态、自旋之间的纠缠和对自旋的量子测量上.基于系综的量子计算演示实验已经被多次实现,但是系综体系在可扩展性上有其原理上的缺陷.要实现可扩展的大规模室温固态量子信息处理和量子计算的突破,实现单量子态的寻址和读出是一个最重要的前提.在已经提出的单自旋固态量子计算载体中,比较突出的一类是基于金刚石中的氮-空位色心单电子自旋体系.金刚石中的氮-空位色心单电子自旋量子态可以在室温下初始化、操控与读出,成为室温量子计算机载体的优良候选者.我们首先回顾金刚石氮-空位色心单电子自旋体系作为量子计算机载体的重要进展;然后讨论了该体系在纳米尺度灵敏探测和成像方面的重要应用;最后,描述了此领域的前景.  相似文献   

7.
采用J-C模型,在原子与场共振相互作用时,就半经典和全量子化两种情形下推导出量子光学中一个十分有用的幺正时间演化算符,并应用这一算符展示了一种量子隐形态传输的方案.  相似文献   

8.
在由N+1个相互作用的反铁磁分子环构成的量子自旋系统中,可以调控1种多体纠缠态。N个周边分子环的电子自旋和1个中心分子环的电子存在相互交换,从而在分子间形成可调的相互作用。通过整个系统的有效自旋哈密顿量解析得出系统的量子动力学行为。研究发现在量子涨落的条件下,1种高精度的形纠缠态可以被制备出来。通过控制分子间的相互作用,这种多体纠缠态也可以从一些分子环传输到其他分子环上。  相似文献   

9.
为了研究量子系统的状态可以用Hamiltonian的本征态进行绝热逼近的一个充分条件,给出了满足条件〈f(t)|f′(t)〉=0(t∈[0,∞))且∫∞0‖|f′(t)〉‖dtε的函数f(t)的存在性及一般形式.首先给出了单量子比特态的一般形式,在此基础上,证明了单量子比特态满足上述条件时其分量的具体结构和所应满足的充分必要条件;之后把上述结果推广到n维系统中,得到了n维系统中的量子态满足绝热逼近条件时各分量应满足的充分条件和必要条件.  相似文献   

10.
在大自旋和强各向异性极限下,研究了拓扑相因子对双轴各向异性量子反铁磁链中宏观量子相干的影响.结果表明:有限温度下,在有限长度的量子反铁磁自旋链中,由于拓扑相因子的存在,简并Neel真空态之间隧穿幅的性质将取决于自旋是整数还是半整数.  相似文献   

11.
Semiconductors are ubiquitous in device electronics, because their charge distributions can be conveniently manipulated with voltages to perform logic operations. Achieving a similar level of control over the spin degrees of freedom, either from electrons or nuclei, could provide intriguing prospects for both information processing and the study of fundamental solid-state physics issues. Here we report procedures that carry out the controlled transfer of spin angular momentum between electrons-confined to two dimensions and subjected to a perpendicular magnetic field-and the nuclei of the host semiconductor, using gate voltages only. We show that the spin transfer rate can be enhanced near a ferromagnetic ground state of the electron system, and that the induced nuclear spin polarization can be subsequently stored and 'read out'. These techniques can also be combined into a spectroscopic tool to detect the low-energy collective excitations in the electron system that promote the spin transfer. The existence of such excitations is contingent on appropriate electron-electron correlations, and these can be tuned by changing, for example, the electron density via a gate voltage.  相似文献   

12.
提出了一种利用开放海森堡铁磁自旋链为信道双向传输量子纠缠的方案.通过对量子信道施加静态磁场.可以实现自旋链两端纠缠的周期性交换.经过一个交换周期的时间演化后,原本属于孤立量子比特和自旋链某一末端粒子之间的纠缠会转换成该量子比特和自旋链另一末端粒子之间的纠缠.分析了交换行为和自旋链长度、磁场、耦合强度、各向异性常数之间的关系.并讨论了由4个粒子构成的简单系统中类似的纠缠交换行为。  相似文献   

13.
Spin is a fundamental property of all elementary particles. Classically it can be viewed as a tiny magnetic moment, but a measurement of an electron spin along the direction of an external magnetic field can have only two outcomes: parallel or anti-parallel to the field. This discreteness reflects the quantum mechanical nature of spin. Ensembles of many spins have found diverse applications ranging from magnetic resonance imaging to magneto-electronic devices, while individual spins are considered as carriers for quantum information. Read-out of single spin states has been achieved using optical techniques, and is within reach of magnetic resonance force microscopy. However, electrical read-out of single spins has so far remained elusive. Here we demonstrate electrical single-shot measurement of the state of an individual electron spin in a semiconductor quantum dot. We use spin-to-charge conversion of a single electron confined in the dot, and detect the single-electron charge using a quantum point contact; the spin measurement visibility is approximately 65%. Furthermore, we observe very long single-spin energy relaxation times (up to approximately 0.85 ms at a magnetic field of 8 T), which are encouraging for the use of electron spins as carriers of quantum information.  相似文献   

14.
The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.  相似文献   

15.
Ultracold atoms in optical lattices provide a versatile tool with which to investigate fundamental properties of quantum many-body systems. In particular, the high degree of control of experimental parameters has allowed the study of many interesting phenomena, such as quantum phase transitions and quantum spin dynamics. Here we demonstrate how such control can be implemented at the most fundamental level of a single spin at a specific site of an optical lattice. Using a tightly focused laser beam together with a microwave field, we were able to flip the spin of individual atoms in a Mott insulator with sub-diffraction-limited resolution, well below the lattice spacing. The Mott insulator provided us with a large two-dimensional array of perfectly arranged atoms, in which we created arbitrary spin patterns by sequentially addressing selected lattice sites after freezing out the atom distribution. We directly monitored the tunnelling quantum dynamics of single atoms in the lattice prepared along a single line, and observed that our addressing scheme leaves the atoms in the motional ground state. The results should enable studies of entropy transport and the quantum dynamics of spin impurities, the implementation of novel cooling schemes, and the engineering of quantum many-body phases and various quantum information processing applications.  相似文献   

16.
Xiao M  Martin I  Yablonovitch E  Jiang HW 《Nature》2004,430(6998):435-439
The ability to manipulate and monitor a single-electron spin using electron spin resonance is a long-sought goal. Such control would be invaluable for nanoscopic spin electronics, quantum information processing using individual electron spin qubits and magnetic resonance imaging of single molecules. There have been several examples of magnetic resonance detection of a single-electron spin in solids. Spin resonance of a nitrogen-vacancy defect centre in diamond has been detected optically, and spin precession of a localized electron spin on a surface was detected using scanning tunnelling microscopy. Spins in semiconductors are particularly attractive for study because of their very long decoherence times. Here we demonstrate electrical sensing of the magnetic resonance spin-flips of a single electron paramagnetic spin centre, formed by a defect in the gate oxide of a standard silicon transistor. The spin orientation is converted to electric charge, which we measure as a change in the source/drain channel current. Our set-up may facilitate the direct study of the physics of spin decoherence, and has the practical advantage of being composed of test transistors in a conventional, commercial, silicon integrated circuit. It is well known from the rich literature of magnetic resonance studies that there sometimes exist structural paramagnetic defects near the Si/SiO2 interface. For a small transistor, there might be only one isolated trap state that is within a tunnelling distance of the channel, and that has a charging energy close to the Fermi level.  相似文献   

17.
在考虑修正的海森堡模型下,采用扩展行波法研究了在线性磁场作用下,一维铁磁连中的孤波解.结果表明,在将 的变换式展开到更高阶项(包括 项),各项同性的情况下也可求得包络孤子解,同时在增加了线性磁场后,孤子的运动模式发生了改变从一般的匀速运动变成了匀变速运动.并且发现当 趋近于零时,方程返回到只能在各向异性情况下求解的情况.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号