首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low Ca2+ impedes cross-bridge detachment in chemically skinned Taenia coli   总被引:3,自引:0,他引:3  
K Güth  J Junge 《Nature》1982,300(5894):775-776
Muscle force is generated by cycling cross-bridges between actin and myosin filaments. In smooth muscle, cyclic attachment and detachment of cross-bridges is thought to be induced by a Ca2+- and calmodulin-dependent myosin light chain kinase which phosphorylates myosin. The relaxation that occurs after Ca2+ removal is usually ascribed to dephosphorylation of myosin by a phosphatase as non-phosphorylated myosin is unable to form force-generating criss-bridges. Recently, Dillon et al. claimed, however, that dephosphorylation of attached cross-bridges may impede cross-bridge detachment, thus forming so-called 'latch bridges'. Here we present evidence that after a Ca2+- and calmodulin-induced contraction of chemically skinned guinea pig Taenia coli, the rapid removal of Ca2+ impedes the detachment of the myosin cross-bridges from the actin filament; force can then be maintained without energy consumption. The extremely slowly detaching cross-bridges which maintain the force after Ca2+ removal may indeed correspond to the 'latch bridges' mentioned above.  相似文献   

2.
Myosin subfragment-1 is sufficient to move actin filaments in vitro   总被引:3,自引:0,他引:3  
The rotating crossbridge model for muscle contraction proposes that force is produced by a change in angle of the crossbridge between the overlapping thick and thin filaments. Myosin, the major component of the thick filament, is comprised of two heavy chains and two pairs of light chains. Together they form two globular heads, which give rise to the crossbridge in muscle, and a coiled-coil rod, which forms the shaft of the thick filament. The isolated head fragment, subfragment-1 (S1), contains the ATPase and actin-binding activities of myosin (Fig. 1). Although S1 seems to have the requisite enzymatic activity, direct evidence that S1 is sufficient to drive actin movement has been lacking. It has long been recognized that in vitro movement assays are an important approach for identifying the elements in muscle responsible for force generation. Hynes et al. showed that beads coated with heavy meromyosin (HMM), a soluble proteolytic fragment of myosin consisting of a part of the rod and the two heads, can move on Nitella actin filaments. Using the myosin-coated surface assay of Kron and Spudich, Harada et al. showed that single-headed myosin filaments bound to glass support movement of actin at nearly the same speed as intact myosin filaments. These studies show that the terminal portion of the rod and the two-headed nature of myosin are not required for movement. To restrict the region responsible for movement further, we have modified the myosin-coated surface assay by replacing the glass surface with a nitrocellulose film. Here we report that myosin filaments, soluble myosin, HMM or S1, when bound to a nitrocellulose film, support actin sliding movement (Fig. 2). That S1 is sufficient to cause sliding movement of actin filaments in vitro gives strong support to models of contraction that place the site of active movement in muscle within the myosin head.  相似文献   

3.
The motor protein myosin-I produces its working stroke in two steps   总被引:13,自引:0,他引:13  
Many types of cellular motility, including muscle contraction, are driven by the cyclical interaction of the motor protein myosin with actin filaments, coupled to the breakdown of ATP. It is thought that myosin binds to actin and then produces force and movement as it 'tilts' or 'rocks' into one or more subsequent, stable conformations. Here we use an optical-tweezers transducer to measure the mechanical transitions made by a single myosin head while it is attached to actin. We find that two members of the myosin-I family, rat liver myosin-I of relative molecular mass 130,000 (M(r) 130K) and chick intestinal brush-border myosin-I, produce movement in two distinct steps. The initial movement (of roughly 6 nanometres) is produced within 10 milliseconds of actomyosin binding, and the second step (of roughly 5.5 nanometres) occurs after a variable time delay. The duration of the period following the second step is also variable and depends on the concentration of ATP. At the highest time resolution possible (about 1 millisecond), we cannot detect this second step when studying the single-headed subfragment-1 of fast skeletal muscle myosin II. The slower kinetics of myosin-I have allowed us to observe the separate mechanical states that contribute to its working stroke.  相似文献   

4.
Rapid regeneration of the actin-myosin power stroke in contracting muscle.   总被引:1,自引:0,他引:1  
V Lombardi  G Piazzesi  M Linari 《Nature》1992,355(6361):638-641
At the molecular level, muscle contraction is the result of cyclic interaction between myosin crossbridges, which extend from the thick filament, and the thin filament, which consists mainly of actin. The energy for work done by a single crossbridge during a cycle of attachment, generation of force, shortening and detachment is believed to be coupled to the hydrolysis of one molecule of ATP. The distance the actin filament slides relative to the myosin filament in one crossbridge cycle has been estimated as 12 nm by step-length perturbation studies on single fibres from frog muscle. The 'mechanical' power stroke of the attached crossbridge can therefore be defined as 12-nm shortening with a force profile like that shown by the quick recovery of force following a length perturbation. According to this definition, power strokes cannot be repeated faster than the overall ATPase rate. Here, however, we show that the power stroke can be regenerated much faster than expected from the ATPase rate. This contradiction can be resolved if, in the shortening muscle, the free energy of ATP hydrolysis is used in several actin-myosin interactions consisting of elementary power strokes each of 5-10 nm.  相似文献   

5.
M Irving  V Lombardi  G Piazzesi  M A Ferenczi 《Nature》1992,357(6374):156-158
Motor proteins such as myosin, dynein and kinesin use the free energy of ATP hydrolysis to produce force or motion, but despite recent progress their molecular mechanism is unknown. The best characterized system is the myosin motor which moves actin filaments in muscle. When an active muscle fibre is rapidly shortened the force first decreases, then partially recovers over the next few milliseconds. This elementary force-generating process is thought to be due to a structural 'working stroke' in the myosin head domain, although structural studies have not provided definitive support for this. X-ray diffraction has shown that shortening steps produce a large decrease in the intensity of the 14.5 nm reflection arising from the axial repeat of the myosin heads along the filaments. This was interpreted as a structural change at the end of the working stroke, but the techniques then available did not allow temporal resolution of the elementary force-generating process itself. Using improved measurement techniques, we show here that myosin heads move by about 10 nm with the same time course as the elementary force-generating process.  相似文献   

6.
A Kishino  T Yanagida 《Nature》1988,334(6177):74-76
Single actin filaments (approximately 7 nm in diameter) labelled with fluorescent phalloidin can be clearly seen by video-fluorescence microscopy. This technique has been used to observe motions of single filaments in solution and in several in vitro movement assays. In a further development of the technique, we report here a method to catch and manipulate a single actin filament (F-actin) by glass microneedles under conditions in which external force on the filament can be applied and measured. Using this method, we directly measured the tensile strength of a filament (the force necessary to break the bond between two actin monomers) and the force required for a filament to be moved by myosin or its proteolytic fragment bound to a glass surface in the presence of ATP. The first result shows that the tensile strength of the F-actin-phalloidin complex is comparable with the average force exerted on a single thin filament in muscle fibres during isometric contraction. This force is increased only slightly by tropomyosin. The second measurement shows that the myosin head (subfragment-1) can produce the same ATP-dependent force as intact myosin. The magnitude of this force is comparable with that produced by each head of myosin in muscle during isometric contraction.  相似文献   

7.
I Matsubara  N Yagi  H Miura  M Ozeki  T Izumi 《Nature》1984,312(5993):471-473
According to the cross-bridge model of muscle contraction, an interaction of myosin heads with interdigitating actin filaments produces tension. Although X-ray equatorial diffraction patterns of active (contracting) muscle show that the heads are in the vicinity of the actin filaments, structural proof of actual attachment of heads to actin during contraction has been elusive. We show here that during contraction of frog skeletal muscle, the 5.9-nm layer line arising from the genetic helix of actin is intensified by as much as 56% of the change which occurs when muscle enters rigor, using a two-dimensional X-ray detector. This provides strong structural evidence that myosin heads do in fact attach during contraction.  相似文献   

8.
T Yanagida  T Arata  F Oosawa 《Nature》1985,316(6026):366-369
Muscle contraction results from a sliding movement of actin filaments induced by myosin crossbridges on hydrolysis of ATP, and many non-muscle cells are thought to move using a similar mechanism. The molecular mechanism of muscle contraction, however, is not completely understood. One of the major problems is the mechanochemical coupling at high velocity under near-zero load. Here, we report measurements of the sliding distance of an actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle in an unloaded condition. We used single sarcomeres from which the Z-lines, structures which anchor the thin filaments in the sarcomere, had been completely removed by calcium-activated neutral protease (CANP) and trypsin, and measured both the sliding velocity of single actin filaments along myosin filaments and the ATPase activity during sliding. Our results show that the average sliding distance of the actin filament is less than or equal to 600 A during one ATP cycle, much longer than the length of power stroke of myosin crossbridges deduced from mechanical studies of muscle, which is of the order of 80 A (for example, ref. 15).  相似文献   

9.
Woodhead JL  Zhao FQ  Craig R  Egelman EH  Alamo L  Padrón R 《Nature》2005,436(7054):1195-1199
Contraction of muscle involves the cyclic interaction of myosin heads on the thick filaments with actin subunits in the thin filaments. Muscles relax when this interaction is blocked by molecular switches on either or both filaments. Insight into the relaxed (switched OFF) structure of myosin has come from electron microscopic studies of smooth muscle myosin molecules, which are regulated by phosphorylation. These studies suggest that the OFF state is achieved by an asymmetric, intramolecular interaction between the actin-binding region of one head and the converter region of the other, switching both heads off. Although this is a plausible model for relaxation based on isolated myosin molecules, it does not reveal whether this structure is present in native myosin filaments. Here we analyse the structure of a phosphorylation-regulated striated muscle thick filament using cryo-electron microscopy. Three-dimensional reconstruction and atomic fitting studies suggest that the 'interacting-head' structure is also present in the filament, and that it may underlie the relaxed state of thick filaments in both smooth and myosin-regulated striated muscles over a wide range of species.  相似文献   

10.
R Cooke  M S Crowder  D D Thomas 《Nature》1982,300(5894):776-778
Electron micrographs showing different cross-bridge orientations in different states of muscle fibres, and X-ray diffraction patterns indicating axial cross-bridge disorder in contracting muscle first suggested that force generation in the contracting muscle involved a change in orientation of the myosin heads that form cross-bridges between thick and thin filaments. This has been supported by subsequent work; the myosin molecule has the required flexibility for changes in orientation. The orientation of muscle tryptophans and of probes attached to the myosin heads of permeable muscle fibres depends on the state of the muscle. Recently, fluorescence polarization fluctuations and time-resolved X-ray diffraction patterns have suggested that cross-bridges of a contracting muscle can rotate. We have used electron paramagnetic resonance (EPR) spectroscopy to monitor the orientation of spin labels attached specifically to a reactive sulphydryl on the myosin heads in glycerinated rabbit psoas skeletal muscle. Previously, it has been shown that the paramagnetic probes are highly ordered in rigor muscle, with a nearly random angular distribution in relaxed muscle. We show here that during the generation of isometric tension, approximately 80% of the probes display a random angular distribution as in relaxed muscle while the remaining 20% are highly oriented at the same angle as found in rigor muscle. These findings indicate that a domain of the myosin head does not change orientation during the power stroke of the contractile interaction.  相似文献   

11.
J A Spudich  S J Kron  M P Sheetz 《Nature》1985,315(6020):584-586
Although the biochemical properties of the actin/myosin interaction have been studied extensively using actin activation of myosin ATPase as an assay, until recently no well-defined assay has been available to measure the mechanical properties of ATP-dependent movement of myosin along actin filaments. The first direct measurements of the rate of myosin movement in vitro used a naturally occurring, biochemically ill-defined array of actin filaments from the alga Nitella. We report here the construction of an oriented array of filaments reconstituted from purified muscle actin and the use of this array in a biochemically defined quantitative assay for the directed movement of myosin-coated polystyrene beads. We demonstrate for the first time that actin alone, linked to a substratum by a protein anchor, is sufficient to support movement of myosin at rates consistent with the speeds of muscle contraction and other forms of cell motility.  相似文献   

12.
Alteration in crossbridge kinetics caused by mutations in actin   总被引:6,自引:0,他引:6  
D R Drummond  M Peckham  J C Sparrow  D C White 《Nature》1990,348(6300):440-442
The generation of force during muscle contraction results from the interaction of myosin and actin. The kinetics of this force generation vary between different muscle types and within the same muscle type in different species. Most attention has focused on the role of myosin isoforms in determining these differences. The role of actin isoforms has received little attention, largely because of the lack of a suitable cell type in which the myosin isoform remains constant yet the actin isoforms vary. An alternative approach would be to examine the effect of actin mutations, however, most of these cause such gross disruption of muscle structure that mechanical measurements are impossible. We have now identified two actin mutations which, despite involving conserved amino acids, can assemble into virtually normal myofibrils. These amino-acid changes in actin significantly affect the kinetics of force generation by muscle fibres. One of the mutations is not in the putative myosin-binding site, demonstrating the importance of long-range effects of amino acids on actin function.  相似文献   

13.
K Trombitás  A Tigyi-Sebes 《Nature》1984,309(5964):168-170
An unresolved problem in understanding muscular contraction is why the internal resistance to sarcomere shortening increases progressively during contraction. We have addressed this problem here by investigating the movement of detached acting filaments in the sarcomeres of insect flight muscle. The final position of the detached actin filaments shows that they were able to slide freely into regions where they have the wrong polarity to interact actively with myosin (double-overlap zones) but where they prevent the exertion of force by cross-bridges between myosin and the correctly polarized acting filaments. These observations indicate that the isometric tension at all sarcomere lengths is directly proportional to the number of cross-bridges in the region of single-overlap of correctly polarized actin and myosin filaments. The decrease in tension as sarcomeres shorten is thus the result of the decrease in the number of effective cross-bridges as actin filaments slide into regions where they are of the wrong polarity to form cross-bridges, and where they inhibit the existing cross-bridges.  相似文献   

14.
A new method is described for measuring motions of protein domains in their native environment on the physiological timescale. Pairs of cysteines are introduced into the domain at sites chosen from its static structure and are crosslinked by a bifunctional rhodamine. Domain orientation in a reconstituted macromolecular complex is determined by combining fluorescence polarization data from a small number of such labelled cysteine pairs. This approach bridges the gap between in vitro studies of protein structure and cellular studies of protein function and is used here to measure the tilt and twist of the myosin light-chain domain with respect to actin filaments in single muscle cells. The results reveal the structural basis for the lever-arm action of the light-chain domain of the myosin motor during force generation in muscle.  相似文献   

15.
J M Scholey  K A Taylor  J Kendrick-Jones 《Nature》1980,287(5779):233-235
The presence of actin and myosin in non-muscle cells suggests that they may be involved in a wide range of cellular contractile activities. The generally accepted view is that interaction between actin and myosin in these cells and in vertebrate smooth muscle, is regulated by the level of phosphorylation of the 20,000-molecular weight (MW) light chain. In the absence of calcium, this light chain is not phosphorylated and the myosin cannot interact with actin. Calcium activates a specific calmodulin-dependent kinase which phosphorylates the light chain, initiating actin-myosin interaction. Although most studies on the role of phosphorylation have concentration on the regulation of actin-activated myosin Mg-ATPase activity, phosphorylation of the light chain also seems to control the assembly of smooth muscle myosin into filaments. Using purified smooth muscle light chain kinase, we have confirmed this observation. We report here studies of myosins isolated from the two non-muscle sources, thymus cells and platelets. We observed that these myosins are assembled into filaments at physiological ionic strength and Mg-ATP concentrations, only when the 20,000-MW light chain is phosphorylated.  相似文献   

16.
Muscle contraction is driven by the motor protein myosin II, which binds transiently to an actin filament, generates a unitary filament displacement or 'working stroke', then detaches and repeats the cycle. The stroke size has been measured previously using isolated myosin II molecules at low load, with rather variable results, but not at the higher loads that the motor works against during muscle contraction. Here we used a novel X-ray-interference technique to measure the working stroke of myosin II at constant load in an intact muscle cell, preserving the native structure and function of the motor. We show that the stroke is smaller and slower at higher load. The stroke size at low load is likely to be set by a structural limit; at higher loads, the motor detaches from actin before reaching this limit. The load dependence of the myosin II stroke is the primary molecular determinant of the mechanical performance and efficiency of skeletal muscle.  相似文献   

17.
S Tsukita  M Yano 《Nature》1985,317(6033):182-184
It is now widely accepted that the ATP-induced active sliding of adjacent thin and thick filaments mediated by myosin heads (cross-bridges) is responsible for muscle contraction. Despite intensive studies, the behaviour of the myosin heads during muscle contraction is still unclear. Recent progress in the rapid freezing electron microscope technique has greatly improved the temporal resolution of the images that can be obtained. Here, we report a new type of actomyosin structure captured by rapid freezing. We have analysed images from thin sections of freeze-substituted rabbit skeletal muscle rapidly frozen during isometric contraction. For comparison, we also studied relaxed and rigor muscles. Our results show that, during isometric contraction, most myosin heads are regularly arrayed along the helix of the actin filaments and that this actomyosin structure appears to be distinct from that observed in rigor muscle.  相似文献   

18.
Myosins are motor proteins in cells. They move along actin by changing shape after making stereospecific interactions with the actin subunits. As these are arranged helically, a succession of steps will follow a helical path. However, if the myosin heads are long enough to span the actin helical repeat (approximately 36 nm), linear motion is possible. Muscle myosin (myosin II) heads are about 16 nm long, which is insufficient to span the repeat. Myosin V, however, has heads of about 31 nm that could span 36 nm and thus allow single two-headed molecules to transport cargo by walking straight. Here we use electron microscopy to show that while working, myosin V spans the helical repeat. The heads are mostly 13 actin subunits apart, with values of 11 or 15 also found. Typically the structure is polar and one head is curved, the other straighter. Single particle processing reveals the polarity of the underlying actin filament, showing that the curved head is the leading one. The shape of the leading head may correspond to the beginning of the working stroke of the motor. We also observe molecules attached by one head in this conformation.  相似文献   

19.
Bidirectional movement of actin filaments along tracks of myosin heads   总被引:5,自引:0,他引:5  
Y Y Toyoshima  C Toyoshima  J A Spudich 《Nature》1989,341(6238):154-156
It is well established that muscle contraction results from the relative sliding of actin and myosin filaments. Both filaments have definite polarities and well-ordered structures. Thick filaments, however, are not vital for supporting movement in vitro. Previously we have demonstrated that actin filaments can move continuously on myosin fragments (subfragment-1 or heavy meromyosin (HMM] that are bound to a nitrocellulose surface. Here we report that actin filaments can move in opposite directions on tracks of myosin heads formed when actin filaments decorated with HMM are placed on a nitrocellulose surface. The actin filaments always move forward, frequently changing the direction of the movement, but never move backward reversing the polarity of the movement. The direction of movement is therefore determined by the polarity of the actin filament. These results indicate that myosin heads have considerable flexibility.  相似文献   

20.
A M Keane  I P Trayer  B A Levine  C Zeugner  J C Ruegg 《Nature》1990,344(6263):265-268
The sites on the myosin heavy chain that interact with actin and are responsible for force generation are ill-defined: crosslinking and experiments with isolated domains of the myosin head implicate regions in both the 50K and 20K (molecular weights in thousands) domains of the myosin head (subfragment 1, S1) in this process. We have synthesized peptides from the sequence around the fast-reacting SH1 thiol residue in the 20K domain of S1 in order to delineate precisely an actin-binding site. We used a combination of 1H-NMR and enzyme inhibition assay and also assessed the effects of peptides on skinned rabbit psoas muscle fibres to show that the region of amino acids 690-725 contains an actin-binding site. Peptides from this region bind to actin, act as mixed inhibitors of the actin-stimulated S1 Mg2(+)-ATPase, and influence the contractile force developed in skinned fibres, whereas peptides flanking this sequence are without effect in our test systems. Remarkably, peptides from the N-terminal half of this segment 690-725 increase force development in skinned fibres at submaximal activating concentrations of Ca2+, that is, they behave as calcium-sensitizers; C-terminal peptides, however, inhibit force development without effecting sensitivity to calcium. These different responses indicate that this region is probably binding at two functionally distinct sites on actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号