首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
制冷热泵装置毛细管组件及其应用特性研究   总被引:1,自引:0,他引:1  
研究一种新型结构的毛细管组件,可克服传统毛细管流量变化单一的缺点,并通过优化设计其结构,使其具有较灵活的流量变化特性.采用均相流模型,对普通毛细管与毛细管组件在变工况、变工作模式下的流量变化规律进行了对比计算.计算表明,毛细管组件可较好地满足制冷热泵装置流量变化的需求.建立R22制冷热泵实验装置,对毛细管组件的应用特性进行了实验研究.结果表明,在典型工况下,当制冷负荷和制热负荷不同时,毛细管组件能提供不同的制冷剂流量,与相应的冷热负荷相匹配.  相似文献   

2.
将CO2作为新型机械泵驱动两相流冷却系统的循环工质研究其在两相区的工作特性.在对该系统的各个重要组成器件和工作原理进行阐述后,通过实验对系统在变热负荷变流量条件下的动态响应特性进行研究,并由实验数据对储液器与主回路之间的热质交换进行分析.结果表明:由于系统参数和边界条件的改变引起储液器内气液相界面的震动,使得系统的绝对压力有所变化,从而引起储液器内处于两相状态工质温度的变化,而储液器的温度决定了蒸发器的温度,所以在流量改变和热负荷变化的时候蒸发器内工质会产生温度的脉动;由于CO2具有稳定的化学性质和良好的热力学特性,特别是在饱和态下比其他制冷剂更小的液/气密度比,使其作为机械泵驱动环路式热管系统的循环工质不仅减小了系统的设计体积和质量,而且能够实现长距离复杂回路小温度梯度均匀的散热效果和稳定的工作状态.  相似文献   

3.
建立了制冷剂在绝热毛细管内流动的两流体模型,模型中考虑了气液两相间的速度滑移和温度滑移.采用6种制冷剂的流量实验数据验证该模型,结果表明,90%的预测值与实验值偏差在±10%以内,并且能合理预测压力的沿程分布.应用该模型研究了制冷剂在绝热毛细管内自蒸发过程的非平衡特性.结果显示:气液两相间的速度滑移和温度滑移在整个两相区一直存在,但在绝大部分区域内,这种非平衡性并不显著;与不考虑非平衡性的平衡均相流模型相比,本文模型计算的毛细管流量平均偏高7.3%.  相似文献   

4.
R410A空调器空泡系数模型适用性的实验验证   总被引:1,自引:0,他引:1  
为了找到适用于R410A空调器两相制冷剂质量计算的空泡系数公式,提出了一种可以方便地测量换热器中制冷剂质量的准在线液氮称重法(QOMM),检验了该方法的测量精度,并建立实验台测量了不同空调工况下空调器换热器中的制冷剂量.基于所测制冷剂质量,验证了11种两相流体空泡系数模型对于R410A空调器的适用性.结果表明,QOMM具有较高的测量精度,R410A空调器制冷工况下空泡系数公式宜采用Hughmark模型,而热泵工况下宜采用Premoli模型.  相似文献   

5.
电子膨胀阀制冷剂流量系数的试验研究   总被引:3,自引:2,他引:1  
通过搭建的液环法节流机构流量特性试验台,进行了不同制冷剂质量流量测试.采用R22制冷剂,试验研究了电子膨胀阀开度、节流前后压差、入口制冷剂密度、出口制冷剂比体积以及阀头半锥角、流通面积和径向间隙对电子膨胀阀制冷剂流量系数的影响规律,获得了较大工况范围内流量系数的量化关系.结果表明,相对偏差在±6.5%以内,提出的关联式可以广泛应用于制冷空调领域的阀头线型设计中,以提高设计效率和经济效益.  相似文献   

6.
摘要: 试验研究了带有复杂入口管的积液型两相流分液器在不同干度和质量流量条件下的分液均匀性.结果表明:当干度增大时,分液器的分液均匀性下降;当质量流量增大时,分液器的分液均匀性得到改善;各工况下分液器分液的流体质量流量标准偏差(STD)的平均值为2.80%.同时,对复杂入口管进行了计算流体动力学模拟,提出了一种能够有效降低入口管形式影响的新型双筒体型分液器,并通过试验加以验证.验证试验结果表明,在各工况下,双筒体型分液器分液的STD的平均值为2.36%,比积液型分液器的分液均匀性提高了15.7%.  相似文献   

7.
绝热毛细管中制冷剂流动特性的-阶积分模型   总被引:3,自引:2,他引:1  
制冷剂在绝热毛细管内的流动因存在汽液两相流而较为复杂.本文通过引入两相流区压力和比容之间的一阶近似式,获得该问题的一阶近似积分解.在常见的制冷空调工况范围内,以制冷剂CFC-12、HFC-134a和HC-600a为工质,对该模型与分布参数模型进行了对比;同时也与实验数据进行了对比.结果表明与分布参数模型的平均偏差小于1%,与实验数据亦较好吻合;计算速度较分布参数模型提高了一个数量级以上.  相似文献   

8.
制冷剂在绝热毛细管内的流动因存在汽液两相流而较为复杂.本通过引入两相流区压力和比容之间的一阶近似式,获得该问题的一阶近似积分解.在常见的制冷空调工况范围内,以制冷剂CFC-12、HFC-134a和HC-600a为工质,对该模型与分布参数模型进行了对比;同时也与实验数据进行了对比.结果表明:与分布参数模型的平均偏差小于1%,与实验数据亦较好吻合;计算速度较分布参数模型提高了一个数量级以上。  相似文献   

9.
纯电动汽车采用的热泵空调系统在一些高湿低温地区会出现车外换热器结霜的问题,严重影响系统运行的可靠性.旁通除霜法和制冷剂过冷放热除霜法能够较快地达到除霜的目的且不影响室内舒适性,是热泵型电动汽车空调除霜研究的方向.  相似文献   

10.
针对既有地下防护工程传统空调冷却水池储热能力不足,外置冷却塔易造成工程红外暴露而影响工程安全的问题,提出了采用空调相变冷却水池方案以期增强系统储热能力,延长工程隔绝防护条件下空调系统运行保障时间.搭建了地下防护工程空调相变储热水池实验台,研究了定负荷条件下相变储热单元用量、冷却水流量对相变储热水池储热性能的影响;考虑添加相变储热单元对水池储热能力与连续保障能力的影响,提出了地下防护工程空调相变储热水池储热性能评价指标:相变储热水池单位体积储热量和基于出口温度定义的相变储热水池保障效能系数.研究表明:向地下防护工程空调储热水池中加入相变单元能够提升空调储热水池储热能力;与未加入相变储热单元的空调储热水池相比,当相变储热单元体积占空调储热水池有效容积的2.84%、4.26%时,相变储热水池单位体积储热量分别提高了6.35%和9.03%,相变储热水池保障效能系数分别提高了7%和11%,空调系统运行保障时间分别延长了1.77 h和2.82 h;在实验条件下,流速从250 L/h提高至450 L/h时,水池单位体积储热量和保障效能系数均有所降低,大流量工况(450 L/h)下,相变储热单元存在未完全融化,水池储热能力与连续保障能力明显降低,因此在不影响热泵机组正常运行和水池储热性能的情况下,适当降低冷却水流量对空调储热水池储热系统是有益的.  相似文献   

11.
This paper simulated the optimal refrigerant charge inventory of a refrigeration system in air-con-ditioning operation and heat-pump operation respectively,and studied the refrigerant control strategies in this system.The void fraction in two-phase fluid region was calculated by Harms model.And based on distributed parameter model and Harms model,the refrigerant charge inventory in condenser and evaporator were calculated and analyzed in air-conditioning conditions and heat-pump conditions,respectively.The calculating results of dif-ferent refrigerant mass between refrigeration and heating conditions indicate that the optimal refrigerant charge inventory in heat-pump conditions is lower than that in air-eonditioning conditions.To avoid the decrease of COP due to the surplus refrigerant in heating conditions,we introduced the liquid reservoir control method and associate capillary control method.Both of them could increase the heating capacity of the air-source heat pump-The difference of optimal refrigerant charge inventory in air-conditioning and heat-pump system can be controlled by the liquid reservoir or the associate capillary.  相似文献   

12.
制冷系统的蒸发温度、制冷量、输入功率、性能系数随毛细管的改变而变化,其工作特性对整个系统而言显得十分重要的。因此对毛细管的流动过程建立了质量、能量和动量守恒特性方程,以熵最大原则建立了临界流状态下毛细管出口临界状态的参数关联式,分析计算了进口压力和毛细管内径对出口临界参数的影响,并与标准试验毛细管曲线进行了对比,结果表明,该模型在一定参数范围内与实际状况吻合。  相似文献   

13.
毛细管内制冷剂的综合成核理论与模型   总被引:3,自引:2,他引:3  
对毛细管内制冷剂的闪蒸机理提出“综合成核”理论,从该理论出发,建立了毛细管内制冷剂流动的数学模型,包括气泡密度模型,气泡成长模型和毛细管内制冷剂闪蒸流动数学模型,计算出了管内制冷剂闪蒸流动过程中的压力,温度,气泡密度,干度和空泡份额的分布,并对计算经进行了理论分析,结果表明,在实际闪蒸的流动过程中,由于流体的过热度较小,壁面成核是气泡产生的最主要原因。  相似文献   

14.
利用高速摄影仪对双联毛细管管口气泡的生长和脱离特性进行了可视化实验研究.实验结果表明,当液体淹没双联毛细管管口时,在管内无气体流动情况下,管径大和亲水的毛细管易于成为液体通道,而管径小和憎水的毛细管易于成为气体通道;在有气体流动情况下,管径大的毛细管成为气体通道,而管径小的则成为液体通道.当气室的进气流量增大时,双联毛细管端口处气泡脱离直径变化很小,而气泡的脱离周期却随之明显减小,双联毛细管的气泡生长和脱离会发生明显的相互影响.此外,液体流速对气泡的生长和脱离有很大的影响,液体流速越大,气泡脱离越快,气泡的脱离直径则越小;在液体流速较大时,靠近流体进口处的毛细管端口气泡生长和脱离明显加快,从而导致相邻毛细管端口的液体回流现象.  相似文献   

15.
毛细管两级串联节流特性   总被引:2,自引:0,他引:2  
基于单根绝热毛细管模型建立了绝热毛细管的两级串联节流模型,并根据房间空调器的相关实验数据进行了验证,以两级毛细管的同何尺寸(内径和管长)为变化参数,通过模型对串联节流流量特性进行了仿真和分析,发现了流动壅塞位置的多样性及其对流量的影响,提出了可以指导房间空调器中串联毛细管设计的两点结论:高压连接管只要满足一定的几何尺寸范围就能起到辅助节流的作用;热泵工况下辅毛细管的内径是影响流量的主要参数。  相似文献   

16.
对非共沸混合工质HFC-32/HFC-134a在毛细管内的流动状态进行了分析.从毛细管内流体流动的基本方程出发,结合非共沸二元工质的特性,应用混合法则分析了非共沸混合工质的节流过程.建立数学模型并求得在不同压差条件下的毛细管最佳长度.  相似文献   

17.
冰蓄冷空调系统的经济分析与比较   总被引:3,自引:0,他引:3  
建立了蓄冷空调系统经济分析模型,并利用该模型对常规空调系统和冰蓄冷空调系统的经济性进行了分析比较,研究蓄冷空调系统在我国的经济效益.旨在为蓄冷空调系统的实际应用提供一些依据.  相似文献   

18.
两球形颗粒之间的相互接触问题是研究微机械系统中纳米接触问题的一个重要课题.在微尺度下,毛细液桥现象尤为重要,在观测纳米级物体的相互接触作用力中不可避免地要研究微纳米尺度的液桥问题.本文采用液桥力学平衡、环形近似、体积守恒方法,建立了微纳米球形颗粒之间的液桥模型,通过精确的数学求解,分析球形颗粒的接触角对于毛细作用力和液桥的断裂高度的影响.模拟结果发现,当2个颗粒之间的毛细力作用都很小时,液桥的断裂高度随着接触角的增加而减小,当其中一个颗粒的毛细力作用比较大时,断裂高度随着接触角的增大而增大,接触角的大小对于液桥的断裂高度有直接的决定作用.研究结果为计算预测微观颗粒之间的相互作用力、探索纳米颗粒间的相关特性和机理提供参考.  相似文献   

19.
研究了在内径为1.6 mm的竖直玻璃毛细管圆管内的氮气-CuO水基纳米流体的上升两相流流型分布图.首先对毛细管内氮气-去离子水的两相流流型进行实验研究,并与常规管的半理论半经验公式进行了比较.然后在水中添加不同比容积的十二烷基苯磺酸钠(SDBS)和CuO纳米颗粒制备成纳米流体,对氮气-纳米流体在垂直毛细管内的流型图进行了测量.研究发现,和常规管相比,毛细管内气-水两相流各种流型的转化在较低的流速下就已产生.使用纳米流体后,毛细管内的气液流型转化在更低的流速下产生.纳米流体对两相流流型的影响主要是由于添加表面扩散剂SDBS和纳米颗粒后降低了溶液表面张力而产生的.纳米流体中的纳米颗粒和表面扩散剂浓度对流型图几乎无影响.  相似文献   

20.
利用计算流体力学软件,以某高层建筑的标准层为研究对象,分别模拟发生火灾后空调系统停止运行和空调系统转变为防排烟系统时火灾的发展情况.不同情况下火灾烟气的温度、浓度分析表明,兼用系统有利于火灾后人员疏散.从理论上证明了空调系统与防排烟系统兼用是可行的,为兼用系统的设计提供了依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号