首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
设K是任意实Banach空间X中的闭凸子集,T ∶ K→K是Lipschitz严格伪压缩映象,在没有假设∑∞n=0αnβn<∞之下,本文证明了由xn+1=(1-αn) xn+αnTyn+un与yn=(1-βn) xn+βnTxn+vn,n∈N,生成的带误差的Ishikawa迭代序列强收敛到T的唯一不动点,并给出了更为一般的收敛率估计:若un=vn=0,n∈N,则有‖xn+1-x*‖≤(1-γn) ‖xn-x*‖≤…≤∏nj=0(1-γj) ‖x0-x*‖,其中{γn}是(0,1)中的序列,满足γn≥11+kmin(ε,η-ε) αn.所得结果改进和推广了最新的一些结果.  相似文献   

2.
设D为赋范空间X的子集,Tn∶D→X对所有的x,y∈D和所有的i,j1,有‖Tix-Tjy‖‖x-y‖成立。给定D中的一个序列xn与两个实数序列tn和sn,满足:(a)0tnt<1且∞n=1∑tn=∞;(b)0sn1且∞n=1∑sn<∞;(c)xn 1=tnT(nsnTnxn (1-sn)xn) (1-tn)xnn=1,2,…。证明了如果xn有界,则limn→∞‖Tnxn-xn‖=0..并指出确保Ishikawa迭代过程弱收敛和强收敛到Tn的公共不动点的条件。  相似文献   

3.
Banach空间中关于增生算子方程解带误差的Ishikawa迭代序列   总被引:1,自引:1,他引:0  
设X是任意实Banach空间,T:X→X是Lipschitz连续的增生算子,在没有假设∞∑n=0αnβn<∞之下,证明了由xn 1=(1-αn)xn αn(f-Tyn) un及yn=(1-βn)xn βn(f-Txn) vn,(A)n≥0生成的、带误差的Ishikawa迭代序列强收敛到方程x Tx=f的唯一解,并给出了更为一般的收敛率估计:若un=vn=0,(A)n≥0,则有‖xn 1-x*‖≤(1-γn)‖xn-x*‖≤…≤n∏j=0(1-γj)‖x0-x*‖,其中{yn}是(0,1)中的序列,满足γn≥[1/2max{η,1-η}-1/4min{η,1-η}]αn,(A)n≥0.  相似文献   

4.
设X是一实Banach空间,T∶X→X是Lipschitz连续的增生算子,在没有假设∑∞n=0αnβn<∞之下,本文证明了由xn 1=(1-αn)xn αn(f-Tyn) un以yn=(1-βn)xn βn(f-Txn) vn,n≥0产生的带误差的Ishikawa迭代序列强收敛到方程x Tx=f的唯一解,并给出了更为一般的收敛率估计:若un=vn=0,n≥0,则有‖xn 1-x*‖≤(1-αn)‖xn-x*‖≤…≤∏in=0(1-αj)‖xn-x*‖,其中{αn}是(0,1)中的序列,满足γn≥4ηL(L 1)αn,n≥0。  相似文献   

5.
Banach空间上广义渐近拟非扩张型映象不动点的逼近   总被引:7,自引:4,他引:3  
引入一类比渐近拟非扩张型映象更加广泛的广义渐近拟非扩张型映象,并给出具混合误差的Ishikawa迭代序列强收敛于广义渐近拟非扩张型映象的一个不动点的充要条件:设E是一Banach空间,T:E→E是广义渐近拟非扩张型映象,其渐近系数kn满足∑(kn-1)<∞;若T在F(T)中的点处一致连续,任取一点x0∈E,{xn}是由下式定义的具混合误差的Ishikawa迭代序列{xn 1=(1-αn)xn αnTnyn un, ,yn=(1-βn)xn βnTnxn vn,n≥0其中{αn}、{βn}是[0,1]中的两个数列且∞∑n=0αn收敛,{un}、{vn}是E中两个点列且{vn}有界同时∞En=0‖un‖收敛.则{xn}强收敛于T在E中一个不动点的充要条件是lim inf D(xn,F(T))=0.  相似文献   

6.
渐近非扩张映象的粘性逼近序列的强收敛定理   总被引:1,自引:0,他引:1  
假设E是具有一致Gateaux可微范数的实Banach空间,D是E的非空闭凸子集,f∶D→D是压缩映象,T∶D→D是渐近非扩张映象。设粘性逼近序列{xn}定义为xn 1=αnf(yn) (1-αn)Tnyn,yn=βnxn (1-βn)Tnxn(n≥0),其中αn∈[0,1],βn∈[0,1]。本文给出了{xn}强收敛于T的不动点的充要条件:若{αn}满足如下条件:limn→∞αn=0,∑∞n=0αn=∞,定义一簇压缩映象Sn∶D→D为Sn(z)=(1-dn)f(z) dnTnz,z∈D,其中dn=ktnn--αα,tn∈(α,1)(n=1,2,…),limn→∞tn=1且k2n-1≤(1-dn)2,n≥n0,设zn∈D是Sn的唯一不动点,即zn=Sn(zn)=(1-dn)f(zn) dnTnzn,n≥1,若limn→∞‖xn-Txn‖=0且{zn}强收敛于z*∈F(T),则{xn}强收敛于z*∈F(T)的充分必要条件是{yn}有界。本文的结果不仅是对Reich公开问题的解答,而且是对Reich[1-2]、Shioji和Takahashi[3]、张石生[4]相应结果的推广。  相似文献   

7.
设X为Banach空间,K为X的非空凸子集,且K+K K.设T:K→K为一致连续Φ-半压缩映射.设{αn}n∞=0和{βn}n∞=0为[0,1]中的2实数列,{un}n∞=0和{vn}n∞=0为K中序列并满足一定条件.如果{Tyn}有界,则带误差项的Ishikawa迭代序列{xn}n∞=0强收敛于方程T的唯一不动点.  相似文献   

8.
设X是一致凸Banach空间,C是X中非空闭凸子集,T:C→C是具不动点的非扩张映像,对任意的x1∈C,存在Ishikawa迭代过程{xn|(xn 1=(1-tn)xn tnT(snTxn (1-sn)xn),tn→1,sn→0,∞↑∑↓(n=1) (1-tn)= ∞的子序列{xnk},使‖xnk-Txnk‖→0(k→∞),证明了当映像T具紧性时,Ishikawa迭代过程{xn}强收敛于某不动点,当空间X满足Opial’s条件时,Ishikawa迭代过程{xn}弱收敛于某不动点。  相似文献   

9.
设K是Banch空间E的非空凸有界子集,T:K→K是一致连续强伪压缩的,{αn},(βn),(un),(vn)是满足一定条件的序列,则如下迭代序列({xn)^∞n=0{x0∈K,yn=(1-βn)xn βnTxn vn,n≥0,xn 1=(1-αn)xn αnTyn un,n≥0强收敛于T的不动点。  相似文献   

10.
本文讨论了Banach空间中非空闭凸子集上的广义渐近拟非扩张型映象的迭代逼近问题,给出了具误差的修改的Ishikawa迭代序列{xn}强收敛到广义渐近拟非扩张型映象T不动点的充要条件:设E是Banach空间,C是E中的非空闭凸子集,T∶C→C是广义渐近拟非扩张型映象,其渐近系数kn满足∑∞n=1(kn-1)〈∞,又设F(T)有界,且T在F(T)中的点处一致连续。任取一点x0∈C,{xn}是根据xn+1=αnxn+βnTnyn+γnunyn=ξnxn+ηnTnxn+δnvn定义的具误差的修改的Ishikawa迭代得到的,其中{un},{vn}是C中的两个有界点列,{αn},{βn},{γn},{ξn},{ηn},{δn}是[0,1]中的6个数列且满足αn+βn+γn=1,ξn+ηn+δn=1,∑∞n=1βn〈+∞,∑∞n=1γn〈+∞。则{xn}强收敛于T的不动点的充要条件是limn→∞infd(xn,F(T))=0,其中d(x,A)为x到集合A的距离。本文的结果推广改进了文献[1-7]中的结论。  相似文献   

11.
在这篇文章中,首先介绍了带有误差估计的三步投影法的广义模型,其次将其应用到解决一组在Hilbert空间中的非线性变分不等式的近似解。令H是实值Hilbert空间,K是H中的非空闭凸集。对任意选定的起始点x0,y0,z0∈K,计算序列{xn},{yn}and{zn},使得xn1=(1-an-dn)xn anPk[zn-ρT(zn)] dnunforρ>0Yn=(1-bn-en)xn bnPk[xn-ηT(xn)] enνnforη>0zn=(1-cn-fn)xn cnPκ[yn-λT(yn)] fnwnforλ>0其中T:K→H是K上的非线性映射,PK是H到K的投影且o≤an,bn,cn,dn,en,fn≤1,{un},{vn},{wn}是K中的有界序列。三步投影模型应用到许多变分不等式问题。  相似文献   

12.
设E为Banach空间,T是E到E上的渐近似非扩张映射,T的不动点集合F(T)非空,对任意的x0∈E,如Ishikawa迭代序列定义xn 1=(1-tn)xn tnT^nyn,yn=(1-sn) snT^nxn,tn,sn∈[0,1],n=1,2,3…在不要求T具有连续的条件下,给出并证明了序列{xn}收敛到T的不动点的充分必要条件,我们的定理改进了近期的相应结果。  相似文献   

13.
设E是实一致光滑Banach空间,T:E→E是m-增生算子,且对任意x,y∈E,有∥Tx-Ty∥≤L(1 ∥x-y∥),其中L≥1。假设{un}n=0^∞,{vn}n=0^∞为E中序列,{αn}n=0^∞,{βn}n=0^∞为[0,1]中实数列且满足某些条件,则Ishikawa迭代序列{xn}n=0^∞强收敛于方程x Tx=f的唯一解。  相似文献   

14.
设E为实一致光滑Banach空间,A:D(A)(∩)E→2E为一增生映射且满足值域条件,并且A-1(0)≠(O),对(∧) z∈E,序列{xn}(∩) D(A)定义为xn+1=xn-λn(un+θn(xn-z)+en) 其中un∈Axn,(∧)n≥1.这里{λn},{θn}为满足一定条件的正实数列,假如{un}是有界的,则xn→x*∈A-1(0).本质上将Chidume和Zegeye于2003年提出的关于增生映射零点的精确格式推广为带误差项的形式.  相似文献   

15.
假设线性过程Xt=∑〖DD(〗∞〖〗j=0〖DD)〗ajξt-j, t≥1, 其中{ξt,t∈Z}为一零均值的混合序列, {aj, j≥0}为一实数序列, 满足∑〖DD(〗∞〖〗j=0〖DD)〗j〖JB(|〗aj〖JB)|〗<∞, {ani,1≤i≤n,n≥1}为一实值的三角阵列, 在适当的假设条件下, 利用混合序列的中心极限定理及相应的概率不等式, 证明了由混合序列生成线性过程加权和的极限定理.  相似文献   

16.
φ混合过程的强大数定律   总被引:1,自引:1,他引:1  
研究φ混合随机变量序列{Xn}的强大数定律.在∑∞n=1φ(1)/(2)(n)<+∞以及P(|Xn|>x)≤P(|X|≥x),x≥an的条件下,对{xn}在n处截尾得到{X*n}.通过对{X*n}的部分和上、下界的估计,我们证明了(1)/(n)∑nk=1(X*k-EX*k)a.e.0(n→+∞),进而证明(1)/(n)∑nk=1(Xk-EXk)a.e.0(n→∞).  相似文献   

17.
根据Fibonacci数{Fn}和Lucas数{Ln}的递归关系,研究了关于Fibonacci数和Lucas数的生成函数∑∞n=1Fn2xn和∑∞n=1Ln2xn.利用第一类Stirling数和第二类Stirling数,获得了涉及Fibonacci数和Lucas数的多重卷积公式,推广了WChu的相关结论.  相似文献   

18.
设Rm 是一个正实数列,满足条件limm →∞Rm +1Rm = ∞,φm 是一个实数列,满足0 ≤φm <2π,η(0 < η< π) 和S( S> 1) 是两个常数,设D = U∞m = 1 Dm ,其中 Dm = Rm ≤| z| ≤SRm \z:φm - η< argz < φm + η,我们将证明,对具有一个亏值,下级为μ(μ< ∞) 级为λ(0 < λ<∞) 的亚纯函数f,Borel 定理在C\ D内成立。  相似文献   

19.
设H是实Hilbert空间,K为H中的紧凸集,T:K→H为严格伪压缩映射,满足弱内向条件.本文给出的主要结论是:若{αn}为(0,1)中的数列满足控制条件∑∞n=1αn(1-αn)=∞,x1∈K,则Mann迭代序列{xn}强收敛于T的一个不动点,此结果改进了文献[1]的结论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号