首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
H C Hemmings  P Greengard  H Y Tung  P Cohen 《Nature》1984,310(5977):503-505
The neurotransmitter dopamine has been demonstrated by biochemical, histochemical and immunocytochemical techniques to be unevenly distributed in the mammalian central nervous system. DARPP-32 (dopamine- and cyclic-AMP-regulated phosphoprotein of molecular weight 32,000) is a neuronal phosphoprotein that displays a regional distribution in the mammalian brain very similar to that of dopamine-containing nerve terminals, being highly concentrated in the basal ganglia. The state of phosphorylation of DARPP-32 can be regulated by dopamine and by cyclic AMP in intact nerve cells, suggesting a role for this phosphoprotein in mediating certain of the effects of dopamine on dopaminoceptive cells. The observation that many of the physical and chemical properties of purified DARPP-32 resemble those of phosphatase inhibitor-1 (inhibitor-1), a widely distributed inhibitor of protein phosphatase-1, suggests that DARPP-32 might also function as a phosphatase inhibitor. We report here that DARPP-32 inhibits protein phosphatase-1 at nanomolar concentrations. Moreover, like inhibitor-1, DARPP-32 is effective as an inhibitor in its phosphorylated but not its dephosphorylated form. Thus, the basal ganglia of mammalian brain contain a region-specific neuronal phosphoprotein that is a protein phosphatase inhibitor.  相似文献   

2.
The (Na(+)+K+)ATPase, an integral membrane protein located in virtually all animal cells, couples the hydrolysis of ATP to the countertransport of Na+ and K+ ions across the plasma membrane. In neurons, a large portion of cellular energy is expended by this enzyme to maintain the ionic gradients that underlie resting and action potentials. Although neurotransmitter regulation of the enzyme in brain has been reported, such regulation has been characterized either as a nonspecific phenomenon or as an indirect effect of neurotransmitter-induced changes in ionic gradients. We report here that the neurotransmitter dopamine, through a synergistic effect on D1 and D2 receptors, inhibits the (Na(+)+K+)ATPase activity of isolated striatal neurons. Our data provide unequivocal evidence for regulation by a neurotransmitter of a neuronal ion pump. They also demonstrate that synergism between D1 and D2 receptors, which underlies many of the electrophysical and behavioural effects of dopamine in the mammalian brain, can occur on the same neuron. In addition, the results support the possibility that dopamine and other neurotransmitters can regulate neuronal excitability through the novel mechanism of pump inhibition.  相似文献   

3.
Ecto-protein kinase activity on the external surface of neural cells   总被引:14,自引:0,他引:14  
Y H Ehrlich  T B Davis  E Bock  E Kornecki  R H Lenox 《Nature》1986,320(6057):67-70
ATP is secreted in association with neurotransmitters at certain synapses and neuromuscular junctions. Extracellular ATP is known to exert potent effects on the activity of cells in the nervous system, where it can act as a neurotransmitter or as a modulator regulating the activity of other neurohormones. We have suggested that such modulation may involve the activity of extracellular protein phosphorylation systems. It is well known that intracellular protein kinases are important in the regulation of various neuronal functions, but protein kinases which use extracellular ATP to phosphorylate proteins localized at the external surface of the plasma membrane (ecto-protein kinases) have not been demonstrated in neuronal cells. Here we present direct evidence for the existence of an ecto-protein kinase and demonstrate endogenous substrates for its activity at the surface of intact neural cells. The phosphorylation of one of these surface proteins is selectively stimulated during cell depolarization. In addition, neuronal cell adhesion molecules (N-CAMs) appear to be among the substrates of ecto-protein kinase activity. These results suggest a role for surface protein phosphorylation in regulating specific functions of developing and mature neurones.  相似文献   

4.
J M Arrang  M Garbarg  J C Schwartz 《Nature》1983,302(5911):832-837
Although histaminergic neurones have not yet been histochemically visualized, there is little doubt that histamine (HA) has a neurotransmitter role in the invertebrate and mammalian central nervous system. For example, a combination of biochemical, electrophysiological and lesion studies in rats have shown that histamine is synthesized in and released from a discrete set of neurones ascending through the lateral hypothalamic area and widely projecting in the telencephalon. Histamine acts on target cells in mammalian brain via stimulation of two classes of receptor (H1 and H2) previously characterized in peripheral organs and probably uses Ca2+ and cyclic AMP, respectively, as second messengers. It is well established that several neurotransmitters affect neuronal activity in the central nervous system through stimulation not only of postsynaptic receptors, but also of receptors located presynaptically which often display distinct pharmacological specificity and by which they may control their own release. Such 'autoreceptors' have been demonstrated (or postulated) in the case of noradrenaline, dopamine, serotonin, acetylcholine and gamma-aminobutyric acid (GABA) neurones but have never been demonstrated for histamine. We show here that histamine inhibits its own release from depolarized slices of rat cerebral cortex, an action apparently mediated by a class of receptor (H3) pharmacologically distinct from those previously characterized, that is, the H1 and H2 receptors.  相似文献   

5.
At least three different families of endogenous opioid peptides, the enkephalins, endorphins and dynorphins, are present in the mammalian central nervous system (CNS). Immunocytochemical studies have demonstrated their localization in neurones, which supports the view that these peptides may have a role as neurotransmitter or neuromodulators. However, the target cells and cellular processes acted upon by the opioid peptides are still largely unknown. One possible function of neuropeptides, including the opioid peptides, may be presynaptic modulation of neurotransmission in certain neuronal pathways, for example, by inhibition or promotion of neurotransmitter release from the nerve terminals. Here we report that dynorphin and some benzomorphans potently and selectively inhibit the release of (radiolabelled) dopamine from slices of rat corpus striatum, by activating kappa-opioid receptors. In contrast, [Leu5]enkephalin and [D-Ala2, D-Leu5]enkephalin selectively inhibit acetylcholine release by activating delta-opioid receptors.  相似文献   

6.
Somatostatin immunoreactivity in neuritic plaques of Alzheimer's patients   总被引:1,自引:0,他引:1  
J H Morrison  J Rogers  S Scherr  R Benoit  F E Bloom 《Nature》1985,314(6006):90-92
Senile dementia of the Alzheimer's type can be diagnosed with certainty only by examining neurofibrillary tangles and neuritic plaques under the microscope. Recently, it has been suggested that the condition is linked to specific neurotransmitter systems, with a decline of cortical acetylcholine, choline acetyltransferase, cholinergic neurones projecting to the cortex, cortical noradrenaline content, locus coeruleus neurones and cortical somatostatic content. Using immunocytochemical methods, we here report that somatostatin-immunoreactive processes are present in neuritic plaques in human Alzheimer's specimens. These data, as well as other reports of non-cholinergic changes, strongly imply that Alzheimer's disease cannot be linked exclusively to cortical cholinergic elements, as proposed previously. Rather, our data on plaque and somatostatin co-localization and distribution patterns suggest that Alzheimer's neuropathology may involve primarily the loss of selective cortical neurones that are targets of the implicated transmitter systems and that plaque formation may result from the degeneration of presynaptic and postsynaptic neurites of large projection neurones in layers III and V. Given the neurochemically heterogeneous input to these cells, it is not surprising that several neurotransmitter systems, one of which is somatostatin, are implicated in the pathology of Alzheimer's disease.  相似文献   

7.
Synapsin I bundles F-actin in a phosphorylation-dependent manner   总被引:12,自引:0,他引:12  
M B?hler  P Greengard 《Nature》1987,326(6114):704-707
Synapsin I is a neuron-specific phosphoprotein localized to the cytoplasmic surface of synaptic vesicles. This phosphoprotein is a major substrate for cyclic AMP-dependent and calcium/calmodulin-dependent protein kinases. Its state of phosphorylation can be altered both in vivo and in vitro by a variety of physiological and pharmacological manipulations known to affect synaptic function. Recent direct evidence suggests that it may be involved in the regulation of neurotransmitter release from the nerve terminal. In the nerve terminal, synaptic vesicles are embedded in a cytoskeletal network, consisting in part of actin. We report here the ability of the dephospho-form of synapsin I to bundle F-actin. This bundling activity is reduced when synapsin I is phosphorylated by cAMP-dependent protein kinase and virtually abolished when it is phosphorylated by calcium/calmodulin-dependent protein kinase II or by both kinases. These results, demonstrating an interaction of synapsin I with actin in vitro, support the possibility that synapsin I is involved in clustering of synaptic vesicles at the presynaptic terminal and that the phosphorylation of synapsin I may be involved in regulating the translocation of synaptic vesicles to their sites of release.  相似文献   

8.
T M Egan  R A North 《Nature》1986,319(6052):405-407
Acetylcholine (ACh) is considered to act as a neurotransmitter in the mammalian brain by binding to membrane receptors and bringing about a change in neurone excitability. In the case of muscarinic receptors, cell excitability is usually increased; this effect results from a closure of membrane potassium channels in cortical cells. However, some central neurones are inhibited by ACh, and we hypothesized that these two opposite effects of ACh resulted from interactions with different subtypes of muscarinic receptor. We made intracellular recordings from neurones in the rat nucleus parabrachialis, a group of neurones in the upper pons some of which themselves synthesize ACh. ACh and muscarine caused a membrane hyperpolarization which resulted from an increase in the membrane conductance to potassium ions. The muscarinic receptor subtype was characterized by determining the dissociation equilibrium constant (KD) for pirenzepine during the intracellular recording; the value of approximately 600 nM indicates a receptor in the M2 class. This muscarinic receptor is quite different from that which brings about a decrease in potassium conductance in other neurones, which has a pirenzepine KD of approximately 10 nM (M1 receptors). It is possible that antagonists selective for this kind of M2 receptor would be useful in the management of conditions, such as Alzheimer's disease, which are associated with a reduced effectiveness of cholinergic neurones.  相似文献   

9.
多巴胺是脑内关键的神经递质,它通过与多巴胺受体的作用及其下游的一系列反应来影响基因表达、神经调节和行为活动.在成年鸣禽中,中脑多巴胺能神经元投射到X区、HVC和RA等鸣唱相关核团,释放多巴胺的量受一定社会情境的影响,从而表现出directed song和undirected song等不同鸣唱行为.获得斑胸草雀脑中多巴胺受体的表达情况,为与社会情境有关的鸣唱行为及其他和多巴胺相关的行为活动的神经机制探究提供了基础,并可促进行为学、电生理等方面的研究.我们发现D1受体在斑胸草雀脑中的分布与其mRNA的分布基本一致:在脑的绝大部分区域都有分布;主要鸣唱核团HVC和RA有表达,与其周围区域差异不明显;LMAN中表达量较少;DLM中的表达量较高,并与其周围区域差异明显.但是纹状体内的表达与其周围区域的差异性没有mRNA明显;GCT中的表达量较多,与周围区域差异明显.  相似文献   

10.
S Halpain  J A Girault  P Greengard 《Nature》1990,343(6256):369-372
In the caudate-putamen the glutamatergic cortical input and the dopaminergic nigrostriatal input have opposite effects on the firing rate of striatal neurons. Although little is known of the biochemical mechanisms underlying this antagonism, one action of dopamine is to stimulate the cyclic AMP-dependent phosphorylation of DARPP-32 (dopamine and cAMP-regulated phospho-protein, of relative molecular mass 32,000 (32K]. This phosphorylation converts DARPP-32 from an inactive molecule into a potent inhibitor of protein phosphatase-1. Here we show that activation of the NMDA (N-methyl-D-aspartate) subclass of glutamate receptors reverses the cAMP-stimulated phosphorylation of DARPP-32 in striatal slices through NMDA-induced dephosphorylation of DARPP-32. Thus, the antagonistic effects of dopamine and glutamate on the excitability of striatal neurons are reflected in antagonistic effects of these neurotransmitters on the state of phosphorylation of DARPP-32. Our results indicate that stimulation of NMDA receptors leads to the activation of a neuronal protein phosphatase, presumably the calcium-dependent phosphatase calcineurin, and show, in an intact cell preparation, that signal transduction in the nervous system can be mediated by protein dephosphorylation.  相似文献   

11.
Alzheimer's disease is a progressive degenerative disease of the nervous system characterized neuropathologically by the presence of senile plaques and neurofibrillary tangles in amygdala, hippocampus and neocortex. Dysfunction and death of basal forebrain cholinergic neurones projecting to forebrain targets are associated with marked decreases in cholinergic markers, including the activity of choline acetyltransferase (ChAT). Although cortical levels of somatostatin and somatostatin receptors are reduced in Alzheimer's, no consistent changes have been reported in other neuropeptide systems. We have now examined in control and Alzheimer's brain tissues pre- and postsynaptic markers of corticotropin-releasing factor (CRF), a hypothalamic peptide regulating pituitary-adrenocortical secretion which also seems to act as a neurotransmitter in the central nervous system (CNS). We have found that in Alzheimer's, the concentrations of CRF-like immunoreactivity (CRF-IR) are reduced and that there are reciprocal increases in CRF receptor binding in affected cortical areas. These changes are significantly correlated with decrements in ChAT activity. Our results strongly support a neurotransmitter role for CRF in brain and demonstrate, for the first time, a modulation of CNS CRF receptors associated with altered CRF content. These observations further suggest a possible role for CRF in the pathophysiology of the dementia. Future therapies directed at increasing CRF levels in brain may prove useful for treatment.  相似文献   

12.
The most abundant inhibitory neurotransmitter in the central nervous system, gamma-aminobutyric acid (GABA), exerts its main effects via a GABAA receptor that gates a chloride channel in the subsynaptic membrane. These receptors can contain a modulatory unit, the benzodiazepine receptor, through which ligands of different chemical classes can increase or decrease GABAA receptor function. We have now visualized a GABAA receptor in mammalian brain using monoclonal antibodies. The protein complex recognized by the antibodies contained high- and low-affinity binding sites for GABA as well as binding sites for benzodiazepines, indicative of a GABAA receptor functionally associated with benzodiazepine receptors. As the pattern of brain immunoreactivity corresponds to the autoradiographical distribution of benzodiazepine binding sites, most benzodiazepine receptors seem to be part of GABAA receptors. Two constituent proteins were identified immunologically. Because the monoclonal antibodies cross-react with human brain, they provide a means for elucidating those CNS disorders which may be linked to a dysfunction of a GABAA receptor.  相似文献   

13.
P Davies  R Katzman  R D Terry 《Nature》1980,288(5788):279-280
Both Alzheimer's disease and senile dementia of the Alzheimer type (AD/SDAT) are progressive dementias characterized neuropathologically by the presence in the cerebral cortex of numerous neurofibrillary tangles and neuritic plaques. We use the abbreviation AD/SDAT to denote all such cases, irrespective of age of onset. Studies of neurotransmitter-related parameters in autopsied brain tissues from patients with AD/SDAT have, to date, been confined to five putative transmitter systems. Acetycholine-releasing neurones seem to be most markedly and consistently affected, as judged by the extensive reductions in choline acetyltransferase (ChAT) and acetylcholinesterase activities that have been reported. Despite numerous studies, there is no consistent evidence for the involvement of neurones releasing dopamine, noradrenaline, serotonin, or gamma-aminobutyric acid in AD/SDAT, nor for loss of muscarinic cholinergic receptors. Thus, the involvement of cholinergic neurones in AD/SDAT seems to be specific. However, the possible involvement of neurones using other chemicals as transmitters has yet to be explored. The recent recognition of the existence of so-called 'peptidergic neurones' in the mammalian brain (for review see ref. 8) and the availability of radioimmunoassay (RIA) techniques for studying these peptides, have led us to begin a systematic investigation of neuropeptides in autopsied brain tissue from cases of AD/SDAT, and from neurologically normal individuals. We report here results obtained with a RIA for somatostatin, showing that somatostatin-like immunoreactivity in the cerebral cortex is reduced in tissue from AD/SDAT patients.  相似文献   

14.
T E Salt 《Nature》1986,322(6076):263-265
Excitatory amino acids such as L-glutamate and L-aspartate are well established as neurotransmitter candidates in the mammalian central nervous system, and three types of receptor for these substances have been proposed, characterized by the agonists N-methyl-D-aspartate (NMDA), kainate and quisqualate. All these receptors have been suggested to have synaptic roles in excitatory transmission in the brain. Here I demonstrate that NMDA receptors play a crucial role in the observed response of ventrobasal thalamus (VB) neurones to natural stimulation of somatosensory afferents, but do not appear to be responsible for the short-latency excitation seen on electrical stimulation of the afferents which is apparently mediated by excitatory amino-acid receptors of the non-NMDA type. This result indicates an involvement of NMDA and non-NMDA receptors in the responses of VB neurones to stimulation of somatosensory somatosensory afferents, depending on the mode of stimulation of the pathway.  相似文献   

15.
Evidence for coexistence of dopamine and CCK in meso-limbic neurones   总被引:10,自引:0,他引:10  
Vanderhaeghen et al. reported the occurrence of gastrin-like immunoreactivity in the mammalian brain. Subsequent studies have revealed that this immunoreactivity corresponded mainly to the COOH-terminal octapeptide of cholecystokinin (CCK-8), which has a COOH-terminal pentapeptide identical to gastrin. Also, two peptides resembling the NH- and the COOH-terminal tetrapeptide fragments of CCK-8 are present in the central nervous system (CNS). Using COOH-terminal-specific antisera raised to gastrin and/or CCK, the distribution of CCK neurones has been described with immunohistochemical techniques. Although high numbers of cells and nerve terminals are found in cortical areas, the CCK systems are also present in most other parts of the brain and spinal cord. In the CNS, true gastrin molecules, gastrin-17 and gastrin-34 have been located only in the neurohypophysis, hypothalamus and occasionally in the medulla oblongata (unpublished results). We describe here the occurrence of peptides in meso-limbic dopamine neurones in the rat brain. Evidence has also been obtained that mesencephalic dopamine neurones in the human brain contain similar peptides.  相似文献   

16.
Selected actions of neurotransmitters and hormones on ion channels in nerve and muscle cells are now thought to be mediated by cyclic AMP-dependent protein phosphorylation. Although the cyclic AMP-dependent protein kinase (cAMP-PK) affects the cellular properties of several neurones, its mode of action at the single-channel level has not been characterized. In addition, little is known about the identity or subcellular localization of the phosphoproteins that control channel activity and, in particular, whether the critical substrate proteins are cytoplasmic or membrane-associated. In Aplysia sensory neurones, serotonin produces a slow modulatory synaptic potential mediated by cAMP-PK that contributes to presynaptic facilitation and behavioural sensitization. Previously, we have found that serotonin acts on cell-attached membrane patches to produce prolonged all-or-none closures of a specific class of K+ channels (S channels) whose gating is weakly dependent on voltage and independent of intracellular calcium. We demonstrate here that in cell-free membrane patches from Aplysia sensory neurones, the purified catalytic subunit of cAMP-PK produces all-or-none closures of the S channel, simulating most (but not all) aspects of the action of serotonin on cell-attached patches. This result suggests that protein kinase acts on the internal surface of the membrane to phosphorylate either the channel itself or a membrane-associated protein that regulates channel activity.  相似文献   

17.
A subpopulation of rat dorsal root ganglion neurones is catecholaminergic   总被引:3,自引:0,他引:3  
J Price  A W Mudge 《Nature》1983,301(5897):241-243
The neurotransmitters used by the sensory neurones of the dorsal root ganglia (DRG) are unknown. A proportion of these cells contain physiologically active peptides; for example, subpopulations of small-diameter neurones contain substance P or somatostatin. Although these peptides probably have some influence on synaptic transmission in the dorsal horn of the spinal cord, their status as neurotransmitters is uncertain and it is possible that they coexist with conventional neurotransmitters. In addition, the neurones containing identified peptides account for only a fraction of the DRG sensory neurones. There is evidence that the DRG contain catecholamines within fibres thought to be autonomic, but these substances have not been found within the sensory cell bodies themselves. Moreover, the apparently inappropriate, inhibitory physiological effect of catecholamines in the dorsal horn has argued against their being primary sensory neurotransmitter molecules. We have used here antisera against tyrosine hydroxylase (TH; EC 1.14.16.2) and dopamine-beta-hydroxylase (DBH; EC 1.14.17.1), two enzymes specific to catecholaminergic cells, to show that a subpopulation of rat DRG neurones is catecholaminergic and that the neurotransmitter they make is probably dopamine. We believe this to be the first report of catecholaminergic sensory neurones.  相似文献   

18.
Odorant-sensitive adenylate cyclase may mediate olfactory reception   总被引:8,自引:0,他引:8  
U Pace  E Hanski  Y Salomon  D Lancet 《Nature》1985,316(6025):255-258
The mechanism of the sense of smell has long been a subject for theory and speculation. More recently, the notion of odorant recognition by stereospecific protein receptors has gained wide acceptance, but the receptor molecules remained elusive. The recognition molecules are believed to be quite diverse, which would partly explain the unusual difficulties encountered in their isolation by conventional ligand-binding techniques. An alternative approach would be to probe the receptors through transductory components that may be common to all receptor types. Here we report the identification of one such transductory molecular component. This is an odorant-sensitive adenylate cyclase, present in very large concentrations in isolated dendritic membranes of olfactory sensory neurones. Odorant activation of the enzyme is ligand and tissue specific, and occurs only in the presence of GTP, suggesting the involvement of receptor(s) coupled to a guanine nucleotide binding protein (G-protein). The olfactory G-protein is independently identified by labelling with bacterial toxins, and found to be similar to stimulatory G-proteins in other systems. Our results suggest a role for cyclic nucleotides in olfactory transduction, and point to a molecular analogy between olfaction and visual, hormone and neurotransmitter reception. Most importantly, the present findings reveal new ways to identify and isolate olfactory receptor proteins.  相似文献   

19.
Phosphorylation of membrane components is thought to be an important process in membrane function. Phosphorylated proteins and a special class of phospholipids, the (poly)phosphoinositides (poly PI), are implicated in the regulation of membrane permeability and synaptic transmission in neurones. For many years, protein phosphorylation and poly PI metabolism have been studied in parallel without knowledge of their possible interaction. We report here that the ACTH-sensitive protein kinase/B-50 protein complex which we recently isolated in soluble form from rat brain synaptosomal plasma membranes has lipid phosphorylating activity. Exogenously added phosphatidylinositol 4-phosphate (DPI) is phosphorylated to phosphatidylinositol 4,5-diphosphate (TPI), and this DPI-kinase activity is dependent on the state of phosphorylation of the protein kinase/B-50 protein complex. The results imply that phosphorylation of protein may affect the metabolism of (poly) PI in brain cell membranes.  相似文献   

20.
GABA affects the release of gastrin and somatostatin from rat antral mucosa   总被引:2,自引:0,他引:2  
R F Harty  P A Franklin 《Nature》1983,303(5918):623-624
gamma-Aminobutyric acid (GABA) is regarded as the major inhibitory neurotransmitter in the central nervous system of vertebrates. GABA exerts its inhibitory actions by interacting with specific receptors on pre- and postsynaptic membranes and has been shown to inhibit somatostatin release from hypothalamic neurones in vitro. Concepts of innervation of the gastrointestinal tract have been expanded by recent studies which suggest that GABAergic neurones are not confined solely to the central nervous system but may also exist in the vertebrate peripheral autonomic nervous system. Jessen and coworkers have demonstrated the presence, synthesis and uptake of GABA by the myenteric plexus of the guinea pig taenia coli, and have documented the presence of glutamic acid decarboxylase (GAD) in isolated myenteric plexus. This enzyme is responsible for the conversion of glutamic acid to GABA in GABAergic neurones. The possibility that GABA may have a role in neurotransmission or neuromodulation in the enteric nervous system of the vertebrate gut has been suggested by several investigators. Furthermore, GABA receptors have been demonstrated on elements of the enteric nervous system. The effects of GABA on gastrointestinal endocrine cell function have not been examined. We report here the effects of GABA on gastrin and somatostatin release from isolated rat antral mucosa in short-term in vitro incubations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号