首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
采用微波液相辅助法及退火处理制备了纳米花结构的钴酸锌(ZnCo_2O_4),并考察了不同退火温度对材料性能的影响。利用X射线衍射(XRD)仪、扫描电镜(SEM)、循环伏安(CV)法、电化学阻抗谱(EIS)和恒流充放电测试,对所制备材料的晶体结构、形貌以及电化学性能进行了分析。分析结果表明:不同退火温度均能制备出尖晶石结构的ZnCo_2O_4。随着退火温度的升高,ZnCo_2O_4纳米花趋于团聚。400℃退火制备的ZnCo_2O_4纳米花具有较好的电化学性能。在200 m A·g~(-1)的电流密度,经过50圈循环后,比容量仍高达673. 5 m A·h·g~(-1),对应的库伦效率为97. 5%,表现出了良好的循环性能和高充放电比容量。  相似文献   

2.
采用溶剂热法合成了绣球花状Co_3O_4纳米材料,并利用扫描电子显微镜和X射线衍射仪进行了微观形貌和结构的表征,结果显示样品的形貌为4~6μm绣球花状分级结构微米球,结晶良好,无杂相生成。该绣球花状Co_3O_4纳米材料用做锂离子电池负极材料时表现出很高的可逆比容量和良好的循环性能。在300 m A/g电流密度下,首次放电比容量达1 508 m A·h/g,经过20次循环可逆比容量为1 300 m A·h/g。其良好的电化学性能归功于绣球花状Co_3O_4材料的独特形貌,其多级结构能够缩短锂离子的传输路径,并且拥有足够大的孔隙,来适应和缓解电极材料在循环过程的体积效应。  相似文献   

3.
过渡金属氧化物作为锂离子电池(lithium-ion batteries,LIBs)阳极材料时具有较高的理论容量,但因其电导率低,以及充放电过程中的体积膨胀效应常会导致容量的快速衰减.碳包覆是提升金属氧化物导电性的有效方法,二者之间的协同效应也可以有效提升材料的电化学性能.以MnO_2纳米线为模板制备出MnO_2@ZIF-67有机-无机杂化纳米结构,再通过退火处理合成了氮掺杂碳包覆的MnO@CoMn_2O_4纳米线复合材料(MnO@CoMn_2O_4@N-C).ZIF-67的有机配体在高温煅烧过程中发生碳化反应,产生了氮掺杂碳,提升了导电性.当作为锂离子电池阳极材料时,MnO@CoMn_2O_4/N-C纳米线复合材料在0.1 A/g电流密度下的首次放电比容量为1 594.6 mA·h/g,并且在100次充放电循环后的放电比容量仍保持在925.8 mA.h/g,在0.5 A/g电流密度下经200次充放电循环后的放电比容量仍维持在837.6 mA·h/g,同时具有优异的倍率循环性能.这种优异的电化学储能特性主要来源于复合材料的特殊结构,以及氮掺杂碳的包覆.  相似文献   

4.
采用石墨烯掺杂的Cu-有机骨架化合物(Cu-MOF)复合材料(Cu-MOF/r GO)作为锂离子电池负极材料,研究其电化学性能.结果表明:在充放电电流密度为50 m A/g时,充放电循环50次后,材料的放电比容量可达到520m Ah/g.同时该材料也显示出较好的倍率性能和较高的库仑效率.Cu-MOF/r GO是一种具有前景的锂离子电池负极材料.  相似文献   

5.
以中间相炭微球和活性炭为原料,采用物理混合的方法制备锂离子电池复合负极材料.用扫描电镜、X线衍射仪、恒电流充放电和循环伏安(CV)测试来表征材料的表面形貌、结构和电化学性能.研究结果表明:制备复合材料的中间相炭微球和活性炭混合均匀;复合材料首次放电和充电比容量分别为549和290 mA-h/g,当电压为0.25~3.00 V时,复合材料充电曲线斜率介于中间相炭微球和活性炭的充电曲线斜率之间,比容量为93 mA-h/g,显示复合负极材料同时具有脱嵌锂特性和双电层特性;循环30次后,复合材料的放电容量为240 mA-h/g;在充放电电流密度为4 A/g时,复合材料的电化学极化较中间相炭微球的极化显著降低,是一种具有发展前途的锂离子电池负极材料.  相似文献   

6.
以煤焦油为原料在天然石墨球表面包覆一层中间相炭制备复合炭材料,研究中间相炭、天然石墨球和复合炭材料作为锂离子二次电池炭负极材料的电化学性能,并考察不同温度热处理得到的复合炭材料的电化学性能。研究结果表明:复合炭材料同时具有中间相炭及天然石墨球的优点;随着热处理温度的升高,复合炭材料的充放电容量有所降低,于700℃处理2 h的性能最佳,首次充电容量达378 mA.h/g,首次充放电效率为91.3%。复合炭材料在Li/C扣式电池中的循环性能得到提高,50个循环后容量保持率为96%。  相似文献   

7.
文章利用介孔碳(mesoporous carbon,CMK)作为反应载体,通过低温水热法合成ZnO-CMK复合物,并利用XRD和透射电子显微镜对材料进行了结构和形貌的表征。通过电化学实验可知,ZnO-CMK复合物作为锂离子电池负极材料具有较高的容量,循环稳定值达到410mA·h/g,库伦效率高达95%以上。与商业ZnO电极材料相比,其充放电性能和循环稳定性得到了较大的提高。结果表明,经过介孔碳复合改性后的ZnO-CMK复合物可以作为一种有效的锂离子电池负极材料加以研究和应用。  相似文献   

8.
为了提高锂离子电池锡基负极材料的比容量,以SnCl_4·5H_2O和石墨烯为原料,通过气相沉积法和高温烧结制备了SnO_2/石墨烯复合材料,并研究了不同烧结温度对SnO_2/石墨烯复合材料电化学性能的影响. SnO_2颗粒沉积并嵌入在石墨烯的层间,石墨烯的层状结构能够缓冲SnO_2的体积膨胀,进而有效提高材料的循环稳定性.利用电子扫描显微镜、X线能谱和X线衍射等表征方法和循环伏安等电化学性能测试方法对材料进行表征和分析.结果表明:当烧结温度为400℃时,材料的电化学性能最好,在电流密度为100 mA/g时,充放电循环50周后,其放电比容量仍能保持在716.6 mA·h/g;在电流密度为1 A/g时,放电比容量为431.9 mA·h/g.因此,该材料在商用锂离子电池领域具有潜在的应用前景.  相似文献   

9.
稻壳制备锂离子电池负极材料的研究   总被引:2,自引:1,他引:1  
研究了升温速率、热解温度、碱浓度对稻壳制备锂离子电池负极材料的结构和电化学性能的影响.利用差热-热重(DT-TGA)分析、元素分析、X射线衍射(XRD)等测试手段对不同条件处理后的炭材料进行表征,通过电化学分析其充、放电性能.结果表明:该材料属于无定形炭材料,首次充电容量为678.0 mA·h/ g,首次放电容量为239.0 mA·h/ g,十次循环以后容量基本稳定,可逆容量保持在206.1 mA·h/ g左右.  相似文献   

10.
采用基于铁离子构筑的金属有机骨架化合物(MIL-53-Fe、MIL-88-Fe、MIL-100-Fe)为模板,通过简单的煅烧处理,制备出三种不同形貌的α-Fe_2O_3。结果表明当其作为锂离子电池负极材料时,以MIL-53-Fe为前驱物制备的α-Fe_2O_3具有最优异的电化学性能,当电流为0.1 C时,首次放电容量超过1 100 mA·h/g,在电流为1 C循环100次后,容量保持在245 mA·h/g。  相似文献   

11.
基于Li_4Ti_5O_(12)结构,设计双离子取代反应,制备了3种新型锂离子负极材料Li_3Ti_4CrMO_(12)(M=Ni、Ca、Mg),这些取代型负极材料具有与钛酸锂相同的晶体结构.使用球磨、喷雾造粒以及固相合成工艺制备出一次粒子为200~300nm,二次颗粒为多孔球形的新型负极材料Li_3Ti_4CrMO_(12),并对其电化学性能进行了测试.循环充放电试验结果表明,制备的3种材料中,镁铬钛酸锂(Li_3Ti_4CrMgO_(12))具有较高的放电比容量和较好的循环稳定性,0.2C下首次放电比容量达158.6mA·h/g.10次循环后,放电容量为148.1mA·h/g,充电容量为149.1mA·h/g,容量保持率和库伦效率均在99%以上,显示了潜在的应用价值.循环伏安(CV)和电化学阻抗谱(EIS)分析表明,上述优良性能来自于Mg、Cr取代后导致的材料界面电阻的下降.  相似文献   

12.
研究了炭化温度、升温速率以及碱处理浓度对稻壳制备锂离子电池负极材料结构及充放电性能的影响。通过差热热重分析曲线(DT-TGA)、元素分析、X射线粉末衍射(XRD)以及电化学性能测试手段对材料进行了表征。结果表明:在最佳实验条件下,材料首次充电容量为678mA.h/g,首次放电容量为239mA.h/g,循环10次的容量保持率为86.2%。  相似文献   

13.
通过原位复合方法合成碳包覆MnO/石墨烯(C@MnO/GN)复合材料并探究其作为锂离子电池负极材料的电化学性能.扫描电子显微镜(SEM)以及透射电子显微镜(TEM)表征结果表明,MnO纳米颗粒(直径约为30~50nm)均匀分散在石墨烯片层上,且颗粒外面包裹一层厚度约为5nm的碳层.电化学测试结果表明该材料作为锂离子电池负极具有优异的倍率和循环性能.0.2和0.5A/g电流密度下,比容量分别为800和700mAh/g;10A/g电流密度下比容量仍能保持在372mAh/g;当电流密度调回0.5A/g时,其比容量仍能恢复到730mAh/g.该材料也表现出优异的循环性能,在5和10A/g电流密度下依次循环100圈,容量保持率几乎100%.  相似文献   

14.
不同碳源对LiFePO4/C复合正极材料电化学性能的影响   总被引:1,自引:1,他引:0  
取不同碳源(蔗糖、葡萄糖、聚乙烯醇)原料,采用两步固相法制备LiFePO4/C复合锂离子电池正极材料,对其进行XRD和电化学性能测试.XRD分析表明,所制产物均为单一相的橄榄石型晶体结构;恒流充放电测试结果显示,覆碳后的LiFePO4/C放电比容量和循环性能均得到明显改善,添加聚乙烯醇的LiFePO4/C首次放电容量达142.9 mA·h·g -1,充放电循环20 周后,其放电容量仍为143.1 mA·h·g-1.  相似文献   

15.
为了实现硅纳米颗粒与一维碳纳米纤维的高效复合,提高硅材料作为锂离子电池负极的电化学性能,通过同轴静电纺丝法构造了硅碳复合结构(Si/C-C)的一维纳米纤维作为锂离子电池的负极材料.通过SEM、TEM、XRD和电化学性能测试对其结构、形貌、成分和电化学性能等进行分析.结果表明:Si/C-C纳米复合纤维的平均直径为500~700 nm,硅含量为22%~33%;在100 m A/g的电流密度下,经100圈循环后其可逆容量维持在1 000 m Ah/g,表现出较佳的循环稳定性和较高的可逆比容量.研究表明,一维复合纳米纤维电化学性能的提升主要归因于硅碳复合结构中一维纳米纤维为硅提供了保护层,一方面有效抑制了硅的体积膨胀,另一方面提升了硅的电子导电性并有效缩短了离子迁移路径.  相似文献   

16.
采用间苯二酚-甲醛为碳源,三聚氰胺为氮源,以NaOH为蚀刻剂,成功合成氮掺杂碳包覆的蛋黄壳结构硅(Si@void@N-C)锂离子电池复合负极材料.对样品进行XRD、 SEM和X射线电子能谱,透射电子显微镜(TEM)和电化学测试等表征及测试.结果表明,成功合成了蛋黄壳结构的Si@void@N-C复合负极材料.同时,该复合材料具有优异的电化学性能,以0.1 A/g的电流密度进行充放电,首次容量可达1 282.3 mAh/g,经过100次循环后,其比容量仍高达994.2 mAh/g,其容量保持率为77.5%,表现出了良好的循环性能.Si@void@N-C材料中,氮掺杂的碳壳可以增加复合材料的导电性,同时,蛋黄壳结构可有效缓解硅的体积效应,有利于形成稳定的SEI膜,从而提高电池的循环稳定性.  相似文献   

17.
以ZIF-8为载体,将吸附?还原法与热处理相结合,制备SnO2/ZnO材料并用作锌镍电池负极.通过优化热处理工艺获得粒径、形貌均匀的SnO2/ZnO材料,然后通过XRD、SEM、循环伏安法和恒电流充放电测试研究SnO2质量分数对SnO2/ZnO材料物相结构、微观形貌及电化学性能的影响.研究结果表明:当温度为800℃,热...  相似文献   

18.
尽管各种各样的CuO纳米结构已被广泛应用于锂离子电池负极材料的研究,但将CuO微米梭作为锂离子电池负极材料却鲜有报道. 运用简单的溶剂热法制备大量的CuO微米梭,并用作锂离子电池负极材料. 实验表明,CuO微米梭在电流密度为100 mA g-1下充放电循环100次后,放电容量依然保持在484 mAh g-1. CuO微米梭优异的电化学性能归功于其独特的梭形结构. 这种结构在锂离子电池充放电过程中可以缩短锂离子和电子的传输距离,缓解体积膨胀效应.  相似文献   

19.
采用溶剂挥发法,以丙酮和DMF做混合溶剂制备PVDF-HFP/PMMA聚合物电解质,通过X射线衍射、热失重分析、交流阻抗、恒流充放电循环及倍率充放电等测试手段,考察了PMMA的添加量对聚合物电解质性能的影响.研究发现当PMMA的添加量为50%时,聚合物电解质表现出最佳性能,室温离子电导率从0.26 m S/cm提升到1.35 m S/cm,以Li Co O2作正极材料,锂片作负极材料组装的聚合物锂离子电池初始容量从80.1 m Ah/g提升到143.6 m Ah/g,在0.2 C倍率条件下,50个循环后容量保持率还能达到80%,表现出优异的锂离子电池性能.  相似文献   

20.
采用水热合成法制备了Fe_3O_4微球,并基于静电引力自组装机制,合成了石墨烯-Fe_3O_4微球复合材料(GEFe_3O_4).Fe_3O_4微球在石墨烯表面均匀分布,且实现了石墨烯对Fe_3O_4微球的部分包覆.电化学测试结果表明,在92.6m A/g电流密度下,Fe_3O_4微球的首次放电容量为938.3 m Ah/g,经30次循环,其放电容量衰减为192.5 m Ah/g;GE-Fe_3O_4的首次放电容量为840 m Ah/g,第30次循环的放电容量达803.5 m Ah/g;电流密度升至463 m A/g,经50次循环,GE-Fe_3O_4的放电容量仍有306.6 m Ah/g.与单纯Fe_3O_4微球相比,GE-Fe_3O_4复合材料的锂离子电池负极性能获得显著改善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号