首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Nam MS  Ardavan A  Blundell SJ  Schlueter JA 《Nature》2007,449(7162):584-587
On cooling through the transition temperature T(c) of a conventional superconductor, an energy gap develops as the normal-state charge carriers form Cooper pairs; these pairs form a phase-coherent condensate that exhibits the well-known signatures of superconductivity: zero resistivity and the expulsion of magnetic flux (the Meissner effect). However, in many unconventional superconductors, the formation of the energy gap is not coincident with the formation of the phase-coherent superfluid. Instead, at temperatures above the critical temperature a range of unusual properties, collectively known as 'pseudogap phenomena', are observed. Here we argue that a key pseudogap phenomenon-fluctuating superconductivity occurring substantially above the transition temperature-could be induced by the proximity of a Mott-insulating state. The Mott-insulating state in the kappa-(BEDT-TTF)2X organic molecular metals can be tuned, without doping, through superconductivity into a normal metallic state as a function of the parameter t/U, where t is the tight-binding transfer integral characterizing the metallic bandwidth and U is the on-site Coulomb repulsion. By exploiting a particularly sensitive probe of superconducting fluctuations, the vortex-Nernst effect, we find that a fluctuating regime develops as t/U decreases and the role of Coulomb correlations increases.  相似文献   

2.
Gate-induced superconductivity in a solution-processed organic polymer film   总被引:3,自引:0,他引:3  
Schön JH  Dodabalapur A  Bao Z  Kloc C  Schenker O  Batlogg B 《Nature》2001,410(6825):189-192
The electrical and optical properties of conjugated polymers have received considerable attention in the context of potentially low-cost replacements for conventional metals and inorganic semiconductors. Charge transport in these organic materials has been characterized in both the doped-metallic and the semiconducting state, but superconductivity has not hitherto been observed in these polymers. Here we report a distinct metal-insulator transition and metallic levels of conductivity in a polymer field-effect transistor. The active material is solution-cast regioregular poly(3-hexylthiophene), which forms relatively well ordered films owing to self-organization, and which yields a high charge carrier mobility (0.05-0.1 cm2 V(-1) s(-1)) at room temperature. At temperatures below approximately 2.35 K with sheet carrier densities exceeding 2.5 x 10(14) cm(-2), the polythiophene film becomes superconducting. The appearance of superconductivity seems to be closely related to the self-assembly properties of the polymer, as the introduction of additional disorder is found to suppress superconductivity. Our findings therefore demonstrate the feasibility of tuning the electrical properties of conjugated polymers over the largest range possible-from insulating to superconducting.  相似文献   

3.
提出了纯金属电阻率的两个简化模型:一个统计模型,一个电子一声子耦合模型。由统计模型可得出:纯金属电阻率与声子浓度及声子平均动量的平方成正比。由电子-声子耦合模型得出:电子的散射几率不仅正比于声子数,而且正比于电子-声子的耦合强度。由这两个模型皆能得出纯金属电阻率在高温时与温度T成正比,低温时与T5成正比的结果。由电阻率—温度曲线的比较表明,两模型相当吻合。  相似文献   

4.
The origin of multiple superconducting gaps in MgB2   总被引:3,自引:0,他引:3  
Magnesium diboride, MgB2, has the highest transition temperature (T(c) = 39 K) of the known metallic superconductors. Whether the anomalously high T(c) can be described within the conventional BCS (Bardeen-Cooper-Schrieffer) framework has been debated. The key to understanding superconductivity lies with the 'superconducting energy gap' associated with the formation of the superconducting pairs. Recently, the existence of two kinds of superconducting gaps in MgB2 has been suggested by several experiments; this is in contrast to both conventional and high-T(c) superconductors. A clear demonstration of two gaps has not yet been made because the previous experiments lacked the ability to resolve the momentum of the superconducting electrons. Here we report direct experimental evidence for the two-band superconductivity in MgB2, by separately observing the superconducting gaps of the sigma and pi bands (as well as a surface band). The gaps have distinctly different sizes, which unambiguously establishes MgB2 as a two-gap superconductor.  相似文献   

5.
Scheffler M  Dressel M  Jourdan M  Adrian H 《Nature》2005,438(7071):1135-1137
The electrical conduction of metals is governed by how freely mobile electrons can move throughout the material. This movement is hampered by scattering with other electrons, as well as with impurities or thermal excitations (phonons). Experimentally, the scattering processes of single electrons are not observed, but rather the overall response of all mobile charge carriers within a sample. The ensemble dynamics can be described by the relaxation rates, which express how fast the system approaches equilibrium after an external perturbation. Here we measure the frequency-dependent microwave conductivity of the heavy-fermion metal UPd2Al3 (ref. 4), finding that it is accurately described by the prediction for a single relaxation rate (the so-called Drude response). This is notable, as UPd2Al3 has strong interactions among the electrons that might be expected to lead to more complex behaviour. Furthermore, the relaxation rate of just a few gigahertz is extremely low--this is several orders of magnitude below those of conventional metals (which are typically around 10 THz), and at least one order of magnitude lower than previous estimates for comparable metals. These observations are directly related to the high effective mass of the charge carriers in this material and reveal the dynamics of interacting electrons.  相似文献   

6.
Grüninger M  Rückamp R  Windt M  Reutler P  Zobel C  Lorenz T  Freimuth A  Revcolevschi A 《Nature》2002,418(6893):39-40; discussion 40
One challenge in condensed-matter physics is the experimental confirmation of a new kind of elementary excitation orbital waves, or orbitons, which are predicted to exist in an orbitally ordered state. Saitoh et al. have observed three peaks at 160, 144 and 126 meV in the Raman scattering of orbitally ordered lanthanum manganate (LaMnO(3)), and interpret these as evidence of orbitons. However, we find similar peaks in the optical conductivity, sigma(omega), of LaMnO(3) and point out that the direct observation of orbitons in sigma(omega) is prohibited by a selection rule. This suggests that the Raman peaks observed by Saitoh et al. arise from multiphonons, and that the existence of orbitons has yet to be experimentally confirmed.  相似文献   

7.
Using the d.c. four-probe method, the electrical resistivity of high-purity liquid Sb has been accurately measured as functions of temperature. It is observed that the resistivity of liquid Sb changes abnormally with increasing temperature, which is very different from that of simple liquid metals. Based on the reported structure factor at several temperatures, the results obtained in this work have been discussed and interpreted qualitatively according to Ziman theory. The analysis suggests that the existence of short-range order structure near the melting point can account for the abnormal phenomenon observed in the resistivity of liquid Sb, in which semimetal-metal transaction takes place in the melting process. At the same time, the progress of the structure change of liquid Sb with temperature has also been pointed out  相似文献   

8.
Fleming JG  Lin SY  El-Kady I  Biswas R  Ho KM 《Nature》2002,417(6884):52-55
Three-dimensional (3D) metallic crystals are promising photonic bandgap structures: they can possess a large bandgap, new electromagnetic phenomena can be explored, and high-temperature (above 1,000 degrees C) applications may be possible. However, investigation of their photonic bandgap properties is challenging, especially in the infrared and visible spectrum, as metals are dispersive and absorbing in these regions. Studies of metallic photonic crystals have therefore mainly concentrated on microwave and millimetre wavelengths. Difficulties in fabricating 3D metallic crystals present another challenge, although emerging techniques such as self-assembly may help to resolve these problems. Here we report measurements and simulations of a 3D tungsten crystal that has a large photonic bandgap at infrared wavelengths (from about 8 to 20 microm). A very strong attenuation exists in the bandgap, approximately 30 dB per unit cell at 12 microm. These structures also possess other interesting optical properties; a sharp absorption peak is present at the photonic band edge, and a surprisingly large transmission is observed in the allowed band, below 6 microm. We propose that these 3D metallic photonic crystals can be used to integrate various photonic transport phenomena, allowing applications in thermophotovoltaics and blackbody emission.  相似文献   

9.
由于金属材料的介电常数为复数,直接利用时域有限差分方法(FDTD)处理金属材料电磁波问题时,会导致计算结果的发散及不稳定问题.本文采用各向同性有损耗金属材料介电常数的Drude色散模型,利用电位移矢量作为辅助中间变量,推导出了各向同性色散金属材料的辅助差分FDTD迭代公式.利用该辅助迭代公式计算了金属Au光栅与平面电磁波的相互作用,结果表明该方法解决了数值计算中的不稳定问题,模拟效果较好.  相似文献   

10.
The electrical resistivity of the as-consolidated and coarse-grained bulk gadolinium(Gd) metals was studied in the temperature range of 3-315K.The experimental results showed that with decrease in the grain size of Gd grains from micrometer to nanometer range,the room temperature electrical resistivity increased from 209.7 to 333.0 μΩcm,while the electrical resistivity at the low temperature of 3K was found to increase surprisingly from 16.5 to 126.3 μΩcm.The room temperature coefficient resistivity(TCR) values were obtained as 39.2×10-3,5.51×10-3 and 33.7×10-3K-1.The ratios of room temperature to residual resistivity [RRR=ρ(300K)/ρ(3K)] are 2.64,11.0,respectively,for the as-consolidated samples at 280℃ and 700℃ with respect to that of the coarse-grained sample.All results indicate the remarkable influence of the nanostructure on the electrical resistivity of Gd due to the finite size effect and large fraction of grain boundaries.  相似文献   

11.
采用高温高压法在30min内实现从元素粉末(Bi,Sb,Te)到块体纯相Bi_(0.45)Sb_(1.55)Te_3的快速合成,并利用X射线衍射、场发射扫描电子显微镜及高分辨透射电子显微镜表征样品的相成分和微结构,测试其在室温下的电输运性能.结果表明:高温高压法是一种简单、快速合成块体热电材料的途径;Bi_(0.45)Sb_(1.55)Te_3样品由结晶性良好的典型层状晶体构成;电阻率随合成压力的升高而增加;合成压力为2GPa的样品获得最大功率因子为10.85μW/(cm·K~2).  相似文献   

12.
介绍了设计性实验"金属电阻及电阻率的研究",利用经典金属电子论解释金属电阻及电阻率的微观本质,提出了测量金属电阻率及电阻率温度系数的方法,分析了产生误差的主要原因,提出了减小误差的方法。  相似文献   

13.
Microstructured metallic gratings can be used to enhance the light emission efficiency of LEDs,and the spectral radiation properties of the LEDs vary with the different metallic materials used,leading to variation of the light emission enhancement at the same wavelength for different metallic grating materials.In this paper,the finite difference time domain(FDTD) method has been used to investigate the light emission extraction enhancement of LEDs in which gratings with different metallic materials have been applied.Through analysis of the permittivity of the metals and the quality factors of the surface plasmons(SPs),we concluded that the larger the plasma frequency obtained for the metallic interband transition,then the more suitable the metals are for light emission extraction of photons with relatively short wavelengths.This is because of the abundance of free electrons in the metals with large plasma frequencies.We also found that the wavelength-dependent trends of the extraction enhancement resulting from the scattering mechanism for different metallic materials are similar to each other.For SP-induced enhancement,either the enhancement peak position or the peak value changes significantly with the different metals.  相似文献   

14.
古龙南地区葡萄花油层低阻成因实验研究   总被引:1,自引:0,他引:1  
摘要 针对古龙南地区葡萄花油层存在低阻油层和高阻水层致使该区油水层识别难度较大的问题,选取典型的低阻油层和常规油层岩心样品,对岩样进行物性分析、粒度分析以及压汞、核磁共振、X-衍射等实验,采用对比方法,找出古龙南地区葡萄花油层低阻油层和常规油层在岩性、物性、孔隙结构、粘土矿物以及地层水矿化度等特征上差别,从而得出引起古龙南地区葡萄花油层低电阻率的因素主要有三种:○1岩性细,含泥重;○2粘土附加导电性强;○3微孔隙发育、束缚水饱和度高。这为古龙南地区葡萄花低阻油层的识别与解释提供了理论基础。  相似文献   

15.
Fermi-liquid theory (the standard model of metals) has been challenged by the discovery of anomalous properties in an increasingly large number of metals. The anomalies often occur near a quantum critical point--a continuous phase transition in the limit of absolute zero, typically between magnetically ordered and paramagnetic phases. Although not understood in detail, unusual behaviour in the vicinity of such quantum critical points was anticipated nearly three decades ago by theories going beyond the standard model. Here we report electrical resistivity measurements of the 3d metal MnSi, indicating an unexpected breakdown of the Fermi-liquid model--not in a narrow crossover region close to a quantum critical point where it is normally expected to fail, but over a wide region of the phase diagram near a first-order magnetic transition. In this regime, corrections to the Fermi-liquid model are expected to be small. The range in pressure, temperature and applied magnetic field over which we observe an anomalous temperature dependence of the electrical resistivity in MnSi is not consistent with the crossover behaviour widely seen in quantum critical systems. This may suggest the emergence of a well defined but enigmatic quantum phase of matter.  相似文献   

16.
Chabanov AA  Stoytchev M  Genack AZ 《Nature》2000,404(6780):850-853
The realization that electron localization in disordered systems (Anderson localization) is ultimately a wave phenomenon has led to the suggestion that photons could be similarly localized by disorder. This conjecture attracted wide interest because the differences between photons and electrons--in their interactions, spin statistics, and methods of injection and detection--may open a new realm of optical and microwave phenomena, and allow a detailed study of the Anderson localization transition undisturbed by the Coulomb interaction. To date, claims of three-dimensional photon localization have been based on observations of the exponential decay of the electromagnetic wave as it propagates through the disordered medium. But these reports have come under close scrutiny because of the possibility that the decay observed may be due to residual absorption, and because absorption itself may suppress localization. Here we show that the extent of photon localization can be determined by a different approach--measurement of the relative size of fluctuations of certain transmission quantities. The variance of relative fluctuations accurately reflects the extent of localization, even in the presence of absorption. Using this approach, we demonstrate photon localization in both weakly and strongly scattering quasi-one-dimensional dielectric samples and in periodic metallic wire meshes containing metallic scatterers, while ruling it out in three-dimensional mixtures of aluminium spheres.  相似文献   

17.
烧结温度对Bi_(0.7)Ba_(0.3)FeO_3陶瓷介电、铁电特性影响   总被引:1,自引:1,他引:0  
用固相反应法在不同烧结温度下制备了Bi0.7Ba0.3FeO3陶瓷样品,研究了烧结温度对Bi0.7Ba0.3FeO3陶瓷结构、介电和铁电特性的影响.运用XRD进行物相分析可知,Bi0.7Ba0.3FeO3陶瓷样品为正交结构,主衍射峰与纯相BiFeO3一致,烧结温度在870℃以上时样品有良好的结晶度,电阻率达到108Ω?数量级.在一定的温度区间内,介电常数随烧结温度的升高而增大.在低频区830℃烧结的样品的介电损耗比较大,而对应于870℃和900℃两个烧结温度的样品介电损耗有了明显的减小;在高频区介电损耗对烧结温度的依赖性不大.样品的交流电导率随烧结温度的升高而增大.在900℃烧结的Bi0.7Ba0.3FeO3样品的Pr值可达到113.11μc/cm2,远大于纯相BiFeO3.通过Ba2+的A位掺杂进一步提高了纯相BiFeO3的介电、铁电性能.  相似文献   

18.
Although the local resistivity of semiconducting silicon in its standard crystalline form can be changed by many orders of magnitude by doping with elements, superconductivity has so far never been achieved. Hybrid devices combining silicon's semiconducting properties and superconductivity have therefore remained largely underdeveloped. Here we report that superconductivity can be induced when boron is locally introduced into silicon at concentrations above its equilibrium solubility. For sufficiently high boron doping (typically 100 p.p.m.) silicon becomes metallic. We find that at a higher boron concentration of several per cent, achieved by gas immersion laser doping, silicon becomes superconducting. Electrical resistivity and magnetic susceptibility measurements show that boron-doped silicon (Si:B) made in this way is a superconductor below a transition temperature T(c) approximately 0.35 K, with a critical field of about 0.4 T. Ab initio calculations, corroborated by Raman measurements, strongly suggest that doping is substitutional. The calculated electron-phonon coupling strength is found to be consistent with a conventional phonon-mediated coupling mechanism. Our findings will facilitate the fabrication of new silicon-based superconducting nanostructures and mesoscopic devices with high-quality interfaces.  相似文献   

19.
模拟地层条件下岩芯电阻率与温度关系的实验研究   总被引:2,自引:0,他引:2  
利用模拟地层条件岩芯电阻率测量仪,对6块孔隙度、渗透率各不相同的砂岩岩芯,在一定围压条件下,岩芯完全饱和盐水时,考察了岩芯电阻率随温度的变化。发现饱和盐水岩芯的电阻率随温度升高,以幂函数形式下降。虽然岩芯中饱和盐水的电阻率同样随温度以幂函数形式下降,但岩芯电阻率的下降不能完全用岩芯饱和盐水的下降表征。胶结指数m或阿尔奇公式中的比例系数a同样受温度影响。进而表明在温度作用下,组成岩芯的各种矿物所发生的微观变化,将在岩芯的宏观性质上表现出来。  相似文献   

20.
摘要:电阻率各向异性是影响煤储层电法勘探的重要因素,针对煤样复电阻率各向异性的参数评价,本文对焦作地区煤矿储层沿平行和垂直层理方向分别钻取了煤样,并在高温高压条件下测量得到了相应的复电阻率频谱。为了定量分析温度、压力对煤样复电阻率各向异性的影响,文中建立了煤样不同方向频散参数(界面极化频率、模值频散度、弛豫时间)与温度压力的对应关系,电阻率各向异性系数与温度、压力的对应关系。结果表明:平行层理方向频散参数均与温度、压力呈现良好的线性关系,垂直层理方向频散参数的线性关系不如平行层理方向好;任意方向煤样频散与温度、压力的响应关系都可以用弛豫时间来定量评价;随温度增大各向异性系数增大,随压力增大各向异性系数变化不明显。研究结果可为更精确的定量评价温度、压力对煤储层电各向异性的影响提供实验基础和理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号