首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
DnaJ/Hsp40 (heat shock protein 40) proteins have been preserved throughout evolution and are important for protein translation, folding, unfolding, translocation, and degradation, primarily by stimulating the ATPase activity of chaperone proteins, Hsp70s. Because the ATP hydrolysis is essential for the activity of Hsp70s, DnaJ/Hsp40 proteins actually determine the activity of Hsp70s by stabilizing their interaction with substrate proteins. DnaJ/Hsp40 proteins all contain the J domain through which they bind to Hsp70s and can be categorized into three groups, depending on the presence of other domains. Six DnaJ homologs have been identified in Escherichia coli and 22 in Saccharomyces cerevisiae. Genome-wide analysis has revealed 41 DnaJ/Hsp40 family members (or putative members) in humans. While 34 contain the typical J domains, 7 bear partially conserved J-like domains, but are still suggested to function as DnaJ/ Hsp40 proteins. DnaJA2b, DnaJB1b, DnaJC2, DnaJC20, and DnaJC21 are named for the first time in this review; all other human DnaJ proteins were dubbed according to their gene names, e.g. DnaJA1 is the human protein named after its gene DNAJA1. This review highlights the progress in studying the domains in DnaJ/Hsp40 proteins, introduces the mechanisms by which they interact with Hsp70s, and stresses their functional diversity. Received 27 April 2006; received after revision 5 June 2006; accepted 19 July 2006  相似文献   

2.
Hsp70 chaperones: Cellular functions and molecular mechanism   总被引:36,自引:0,他引:36  
Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.Received 21 October 2004; received after revision 24 November 2004; accepted 6 December 2004  相似文献   

3.
Hsp70 is a highly conserved chaperone that in addition to providing essential cellular functions and aiding in cell survival following exposure to a variety of stresses is also a key modulator of prion propagation. Hsp70 is composed of a nucleotide-binding domain (NBD) and substrate-binding domain (SBD). The key functions of Hsp70 are tightly regulated through an allosteric communication network that coordinates ATPase activity with substrate-binding activity. How Hsp70 conformational changes relate to functional change that results in heat shock and prion-related phenotypes is poorly understood. Here, we utilised the yeast [PSI +] system, coupled with SBD-targeted mutagenesis, to investigate how allosteric changes within key structural regions of the Hsp70 SBD result in functional changes in the protein that translate to phenotypic defects in prion propagation and ability to grow at elevated temperatures. We find that variants mutated within the β6 and β7 region of the SBD are defective in prion propagation and heat-shock phenotypes, due to conformational changes within the SBD. Structural analysis of the mutants identifies a potential NBD:SBD interface and key residues that may play important roles in signal transduction between domains. As a consequence of disrupting the β6/β7 region and the SBD overall, Hsp70 exhibits a variety of functional changes including dysregulation of ATPase activity, reduction in ability to refold proteins and changes to interaction affinity with specific co-chaperones and protein substrates. Our findings relate specific structural changes in Hsp70 to specific changes in functional properties that underpin important phenotypic changes in vivo. A thorough understanding of the molecular mechanisms of Hsp70 regulation and how specific modifications result in phenotypic change is essential for the development of new drugs targeting Hsp70 for therapeutic purposes.  相似文献   

4.
By virtue of their general ability to bind (hold) translocating or unfolding polypeptides otherwise doomed to aggregate, molecular chaperones are commonly dubbed “holdases”. Yet, chaperones also carry physiological functions that do not necessitate prevention of aggregation, such as altering the native states of proteins, as in the disassembly of SNARE complexes and clathrin coats. To carry such physiological functions, major members of the Hsp70, Hsp110, Hsp100, and Hsp60/CCT chaperone families act as catalytic unfolding enzymes or unfoldases that drive iterative cycles of protein binding, unfolding/pulling, and release. One unfoldase chaperone may thus successively convert many misfolded or alternatively folded polypeptide substrates into transiently unfolded intermediates, which, once released, can spontaneously refold into low-affinity native products. Whereas during stress, a large excess of non-catalytic chaperones in holding mode may optimally prevent protein aggregation, after the stress, catalytic disaggregases and unfoldases may act as nanomachines that use the energy of ATP hydrolysis to repair proteins with compromised conformations. Thus, holding and catalytic unfolding chaperones can act as primary cellular defenses against the formation of early misfolded and aggregated proteotoxic conformers in order to avert or retard the onset of degenerative protein conformational diseases.  相似文献   

5.
In Escherichia coli protein quality control is carried out by a protein network, comprising chaperones and proteases. Central to this network are two protein families, the AAA+ and the Hsp70 family. The major Hsp70 chaperone, DnaK, efficiently prevents protein aggregation and supports the refolding of damaged proteins. In a special case, DnaK, together with the assistance of the AAA+ protein ClpB, can also refold aggregated proteins. Other Hsp70 systems have more specialized functions in the cell, for instance HscA appears to be involved in the assembly of Fe/S proteins. In contrast to ClpB, many AAA+ proteins associate with a peptidase to form proteolytic machines which remove irreversibly damaged proteins from the cellular pool. The AAA+ component of these proteolytic machines drives protein degradation. They are required not only for recognition of the substrate but also for substrate unfolding and translocation into the proteolytic chamber. In many cases, specific adaptor proteins modify the substrate binding properties of AAA+ proteins. While chaperones and proteases do not appear to directly cooperate with each other, both systems appear to be necessary for proper functioning of the cell and can, at least in part, substitute for one another. RID="*" ID="*"Corresponding author.  相似文献   

6.
The family of hsp70 (70 kilodalton heat shock protein) molecular chaperones plays an essential and diverse role in cellular physiology, Hsp70 proteins appear to elicit their effects by interacting with polypeptides that present domains which exhibit non-native conformations at distinct stages during their life in the cell. In this paper we review work pertaining to the functions of hsp70 proteins in chaperoning mitochondrial protein biogenesis. Hsp70 proteins function in protein synthesis, protein translocation across mitochondrial membranes, protein folding and finally the delivery of misfolded proteins to proteolytic enzymes in the mitochondrial matrix.  相似文献   

7.
Heat-shock protein 90, a chaperone for folding and regulation   总被引:21,自引:0,他引:21  
Heat-shock protein 90 (Hsp90) is an abundant and highly conserved molecular chaperone that is essential for viability in eukaryotes. Hsp90 fulfills a housekeeping function in contributing to the folding, maintenance of structural integrity and proper regulation of a subset of cytosolic proteins. A remarkable proportion of its substrates are proteins involved in cell cycle control and signal transduction. Hsp90 acts with a cohort of Hsp90 co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. The large conformational flexibility of Hsp90 and a multitude of dynamic co-chaperone complexes contribute to generating functional diversity, and allow Hsp90 to assist a wide range of substrates.  相似文献   

8.
Various adenosine triphosphate (ATP)-dependent proteases were identified within mitochondria which mediate selective mitochondrial protein degradation and fulfill crucial functions in mitochondrial biogenesis. The matrix-localized PIM1 protease, a homologue of theEscherichia coli Lon protease, is required for respiration and maintenance of mitochondrial genome integrity. Degradation of non-native polypeptides by PIM1 protease depends on the chaperone activity of the mitochondrial Hsp70 system, posing intriguing questions about the relation between the proteolytic system and the folding machinery in mitochondria. The mitochondrial inner membrane harbors two ATP-dependent metallopeptidases, them- and thei-AAA protease, which expose their catalytic sites to opposite membrane surfaces and cooperate in the degradation of inner membrane proteins. In addition to its proteolytic activity, them-AAA protease has chaperone-like activity during the assembly of respiratory and ATP-synthase complexes. It constitutes a quality control system in the inner membrane for membrane-embedded protein complexes.  相似文献   

9.
The anti-ulcer drug geranylgeranylacetone (GGA) has been shown to induce the expression of heat shock proteins (HSPs), in particular of Hsp70, in gastric and small intestine cells. In this study, we investigated whether GGA was able to induce Hsp70 in another cell type, human monocytes, which represent a well-established model of Hsp70 expression under oxidative stress. In these cells, GGA had no significant effect either on basal or tobacco smoke-induced Hsp70 expression. We further investigated the effects of GGA on mitochondria, a key organelle of oxidant-mediated cell injury and a putative target for GGA-mediated protection. GGA significantly increased basal mitochondrial membrane polarization and inhibited the decrease in mitochondrial membrane potential of human monocytes exposed to distinct sources of clinically relevant oxidants such as tobacco smoke and y-irradiation. Our results indicate that mitochondria are targets for GGA-mediated protection against oxidative stress in human monocytes, independently of Hsp70.  相似文献   

10.
In vitro import studies have confirmed the participation of cytosolic protein factors in the import of various precursor proteins into mitochondria. The requirement for extramitochondrial adenosine triphosphate for the import of a group of precursor proteins seems to be correlated with the chaperone activity of the cytosolic protein factors. One of the cytosolic protein factors is hsp70, which generally recognizes and binds unfolded proteins in the cytoplasm. Hsp70 keeps the newly synthesized mitochondrial precursor proteins in import-competent unfolded conformations. Another cytosolic protein factor that has been characterized is mitochondrial import stimulation factor (MSF), which seems to be specific to mitochondrial precursor proteins. MSF recognizes the mitochondrial precursor proteins, forms a complex with them and targets them to the receptors on the outer surface of mitochondria.  相似文献   

11.
The source of intraspecies variation in the expression of heat shock proteins (HSPs) remains unresolved but could shed light on differential stress tolerance and disease susceptibility. This study investigated the influence of variable basal HSP synthesis on differential inducibility of HSP synthesis. Basal and heat-induced synthesis of the major HSP families in peripheral blood monocytes from healthy donors (n=42) were analysed using biometabolic labelling and densitometry. Basal Hsp70/Hsc70 synthesis and percentage induction of Hsp70/Hsc70 synthesis were significantly correlated (r=−0.57, p<0.0001), and described most accurately by an exponential decay equation (R=0.68, R2=0.46). This regression equation suggests that increasing levels of basal Hsp70/Hsc70 synthesis are accompanied byan exponential decrease in the percentage induction of Hsp70/Hsc70 synthesis. The model fits data from European and non-European population groups independently, although both coefficients in the regression equation were larger for non-Europeans. This implies population group as an additional factor influencing differential HSP expression. The differential inducibility of Hsp70/Hsc70 due to variable basal synthesis of Hsp70/Hsc70 and based upon population group may contribute to differential stress tolerance or disease susceptibility. Received 27 March 2000; received after revision 19 June 2000; accepted 20 June 2000  相似文献   

12.
Mitochondria contain a specialized system of molecular chaperones that plays a critical role in the biogenesis of Fe/S centers. This Hsp70:J-protein system shows many similarities to the system found in bacteria, but the precise role of neither chaperone system has been defined. However, evidence to date suggests an interaction with the scaffold protein on which a transient Fe/S center is assembled, and thus implies a role in either assembly of the center or its transfer to recipient proteins.  相似文献   

13.
Functions and pathologies of BiP and its interaction partners   总被引:1,自引:1,他引:0  
The endoplasmic reticulum (ER) is involved in a variety of essential and interconnected processes in human cells, including protein biogenesis, signal transduction, and calcium homeostasis. The central player in all these processes is the ER-lumenal polypeptide chain binding protein BiP that acts as a molecular chaperone. BiP belongs to the heat shock protein 70 (Hsp70) family and crucially depends on a number of interaction partners, including co-chaperones, nucleotide exchange factors, and signaling molecules. In the course of the last five years, several diseases have been linked to BiP and its interaction partners, such as a group of infectious diseases that are caused by Shigella toxin producing E. coli. Furthermore, the inherited diseases Marinesco-Sj?gren syndrome, autosomal dominant polycystic liver disease, Wolcott-Rallison syndrome, and several cancer types can be considered BiP-related diseases. This review summarizes the physiological and pathophysiological characteristics of BiP and its interaction partners. Received 20 November 2008; received after revision 09 December 2008; accepted 12 December 2008  相似文献   

14.
A central dogma in biology is the conversion of genetic information into active proteins. The biosynthesis of proteins by ribosomes and the subsequent folding of newly made proteins represent the last crucial steps in this process. To guarantee the correct folding of newly made proteins, a complex chaperone network is required in all cells. In concert with ongoing protein biosynthesis, ribosome-associated factors can interact directly with emerging nascent polypeptides to protect them from degradation or aggregation, to promote folding into their native structure, or to otherwise contribute to their folding program. Eukaryotic cells possess two major ribosome-associated systems, an Hsp70/Hsp40-based chaperone system and the functionally enigmatic NAC complex, whereas prokaryotes employ the Trigger Factor chaperone. Recent structural insights into Trigger Factor reveal an intricate cradle-like structure that, together with the exit site of the ribosome, forms a protected environment for the folding of newly synthesized proteins. Received 29 June 2005; received after revision 4 August 2005; accepted 18 August 2005  相似文献   

15.
Although essential for energy production and cell fate decisions, the mechanisms that govern protein homeostasis, or proteostasis, in mitochondria are only recently beginning to emerge. Fresh experimental evidence has uncovered a role of molecular chaperones of the heat shock protein 90 (Hsp90) family in overseeing the protein folding environment in mitochondria. Initially implicated in protection against cell death, there is now evidence that Hsp90-directed protein quality control in mitochondria connects to hosts of cellular homeostatic networks that become prominently exploited in human cancer.  相似文献   

16.
Protein folding is an extremely active field of research where biology, chemistry, computer science and physics meet. Although the study of protein-folding intermediates in general and equilibrium intermediates in particular has grown considerably in recent years, many questions regarding the conformational state and the structural features of the various partially folded intermediate states remain unanswered. Performing kinetic measurements on proteins that have had their structures modified by site-directed mutagenesis, the so-called protein-engineering method, is an obvious way to gain fine structural information. In the present review, this method has been applied to a variety of proteins belonging to the lysozyme/α-lactalbumin family. Besides recombinants obtained by point mutations of individual critical residues, chimeric proteins in which whole structural elements (10 – 25 residues) from α-lactalbumin were inserted into a human lysozyme matrix are examined. The conformational properties of the equilibrium intermediate states are discussed together with the structural characterization of the partially unfolded states encountered in the kinetic folding pathway. Received 28 May 1998; received after revision 6 July 1998; accepted 6 July 1998  相似文献   

17.
The Drosophila Hsp67Bc gene encodes a protein belonging to the small heat-shock protein (sHSP) family, identified as the nearest functional ortholog of human HSPB8. The most prominent activity of sHSPs is preventing the irreversible aggregation of various non-native polypeptides. Moreover, they are involved in processes such as development, aging, maintenance of the cytoskeletal architecture and autophagy. In larval muscles Hsp67Bc localizes to the Z- and A-bands, which suggests its role as part of the conserved chaperone complex required for Z-disk maintenance. In addition, Hsp67Bc is present at neuromuscular junctions (NMJs), which implies its involvement in the maintenance of NMJ structure. Here, we report the effects of muscle-target overexpression of Drosophila Hsp67Bc hot-spot variants Hsp67BcR126E and Hsp67BcR126N mimicking pathogenic variants of human HSPB8. Depending on the substitutions, we observed a different impact on muscle structure and performance. Expression of Hsp67BcR126E affects larval motility, which may be caused by impairment of mitochondrial respiratory function and/or by NMJ abnormalities manifested by a decrease in the number of synaptic boutons. In contrast, Hsp67BcR126N appears to be an aggregate-prone variant, as reflected in excessive accumulation of mutant proteins and the formation of large aggregates with a lesser impact on muscle structure and performance compared to the Hsp67BcR126E variant.  相似文献   

18.
19.
sHsps and their role in the chaperone network   总被引:17,自引:0,他引:17  
Small Hsps (sHsps) encompass a widespread but diverse class of proteins. These low molecular mass proteins (15—42 kDa) form dynamic oligomeric structures ranging from 9 to 50 subunits. sHsps display chaperone function in vitro, and in addition they have been suggested to be involved in the inhibition of apoptosis, organisation of the cytoskeleton and establishing the refractive properties of the eye lens in the case of α-crystallin. How these different functions can be explained by a common mechanism is unclear at present. However, as most of the observed phenomena involve nonnative protein, the repeatedly reported chaperone properties of sHsps seem to be of key importance for understanding their function. In contrast to other chaperone families, sHsps bind several nonnative proteins per oligomeric complex, thus representing the most efficient chaperone family in terms of the quantity of substrate binding. In some cases, the release of substrate proteins from the sHsp complex is achieved in cooperation with Hsp70 in an ATP-dependent reaction, suggesting that the role of sHsps in the network of chaperones is to create a reservoir of nonnative refoldable protein.  相似文献   

20.
Heat-shock protein 60 (Hsp60) is a highly conserved stress protein which has chaperone functions in prokaryotes and mammalian cells. Hsp60 is associated with the mitochondria and the plasma membrane through phosphorylation by protein kinase A, and is incorporated into lipid membranes as a protein-folding chaperone. Its diverse intracellular chaperone functions include the secretion of proteins where it maintains the conformation of precursors and facilitates their translocation through the plasma membrane. We report here that Hsp60 is concentrated in apoptotic membrane blebs and translocates to the surface of cells undergoing apoptosis. Hsp60 is also enriched in platelets derived from terminally differentiated megakaryocytes and expressed at the surface of senescent platelets. Furthermore, the exposure of monocytic U937 cells to Hsp60 enhanced their phagocytic activity. Our results suggests that externalized Hsp60 in apoptotic cells and senescent platelets influences events subsequent to apoptosis, such as the clearance of apoptotic cells by phagocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号