首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s(-1), most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.  相似文献   

2.
Rafkin SC  Sta Maria MR  Michaels TI 《Nature》2002,419(6908):697-699
Mesoscale (<100 km) atmospheric phenomena are ubiquitous on Mars, as revealed by Mars Orbiter Camera images. Numerical models provide an important means of investigating martian atmospheric dynamics, for which data availability is limited. But the resolution of general circulation models, which are traditionally used for such research, is not sufficient to resolve mesoscale phenomena. To provide better understanding of these relatively small-scale phenomena, mesoscale models have recently been introduced. Here we simulate the mesoscale spiral dust cloud observed over the caldera of the volcano Arsia Mons by using the Mars Regional Atmospheric Modelling System. Our simulation uses a hierarchy of nested models with grid sizes ranging from 240 km to 3 km, and reveals that the dust cloud is an indicator of a greater but optically thin thermal circulation that reaches heights of up to 30 km, and transports dust horizontally over thousands of kilometres.  相似文献   

3.
The seasonal polar ice caps of Mars are composed mainly of CO2 ice. A region of low (< 30%) albedo has been observed within the south seasonal cap during early to mid-spring. The low temperature of this 'cryptic region' has been attributed to a clear slab of nearly pure CO2 ice, with the low albedo resulting from absorption by the underlying surface. Here we report near-infrared imaging spectroscopy of the south seasonal cap. The deep and broad CO2 absorption bands that are expected in the near-infrared with a thick transparent slab of CO2 ice are not observed. Models of the observed spectra indicate that the low albedo results from extensive dust contamination close to the surface of a CO2 ice layer, which could be linked to atmospheric circulation patterns. The strength of the CO2 absorption increases after mid-spring, so part of the dust is either carried away or buried more deeply in the ice layer during the CO2 ice sublimation process.  相似文献   

4.
Richardson MI  Wilson RJ 《Nature》2002,416(6878):298-301
Large seasonal and hemispheric asymmetries in the martian climate system are generally ascribed to variations in solar heating associated with orbital eccentricity. As the orbital elements slowly change (over a period of >104 years), characteristics of the climate such as dustiness and the vigour of atmospheric circulation are thought to vary, as should asymmetries in the climate (for example, the deposition of water ice at the northern versus the southern pole). Such orbitally driven climate change might be responsible for the observed layering in Mars' polar deposits by modulating deposition of dust and water ice. Most current theories assume that climate asymmetries completely reverse as the angular distance between equinox and perihelion changes by 180 degrees. Here we describe a major climate mechanism that will not precess in this way. We show that Mars' global north-south elevation difference forces a dominant southern summer Hadley circulation that is independent of perihelion timing. The Hadley circulation, a tropical overturning cell responsible for trade winds, largely controls interhemispheric transport of water and the bulk dustiness of the atmosphere. The topography therefore imprints a strong handedness on climate, with water ice and the active formation of polar layered deposits more likely in the north.  相似文献   

5.
Several lines of evidence have recently reinforced the hypothesis that an ocean existed on early Mars. Carbonates are accordingly expected to have formed from oceanic sedimentation of carbon dioxide from the ancient martian atmosphere. But spectral imaging of the martian surface has revealed the presence of only a small amount of carbonate, widely distributed in the martian dust. Here we examine the feasibility of carbonate synthesis in ancient martian oceans using aqueous equilibrium calculations. We show that partial pressures of atmospheric carbon dioxide in the range 0.8-4 bar, in the presence of up to 13.5 mM sulphate and 0.8 mM iron in sea water, result in an acidic oceanic environment with a pH of less than 6.2. This precludes the formation of siderite, usually expected to be the first major carbonate mineral to precipitate. We conclude that extensive interaction between an atmosphere dominated by carbon dioxide and a lasting sulphate- and iron-enriched acidic ocean on early Mars is a plausible explanation for the observed absence of carbonates.  相似文献   

6.
Chevrier V  Poulet F  Bibring JP 《Nature》2007,448(7149):60-63
Images of geomorphological features that seem to have been produced by the action of liquid water have been considered evidence for wet surface conditions on early Mars. Moreover, the recent identification of large deposits of phyllosilicates, associated with the ancient Noachian terrains suggests long-timescale weathering of the primary basaltic crust by liquid water. It has been proposed that a greenhouse effect resulting from a carbon-dioxide-rich atmosphere sustained the temperate climate required to maintain liquid water on the martian surface during the Noachian. The apparent absence of carbonates and the low escape rates of carbon dioxide, however, are indicative of an early martian atmosphere with low levels of carbon dioxide. Here we investigate the geochemical conditions prevailing on the surface of Mars during the Noachian period using calculations of the aqueous equilibria of phyllosilicates. Our results show that Fe3+-rich phyllosilicates probably precipitated under weakly acidic to alkaline pH, an environment different from that of the following period, which was dominated by strongly acid weathering that led to the sulphate deposits identified on Mars. Thermodynamic calculations demonstrate that the oxidation state of the martian surface was already high, supporting early escape of hydrogen. Finally, equilibrium with carbonates implies that phyllosilicate precipitation occurs preferentially at a very low partial pressure of carbon dioxide. We suggest that the possible absence of Noachian carbonates more probably resulted from low levels of atmospheric carbon dioxide, rather than primary acidic conditions. Other greenhouse gases may therefore have played a part in sustaining a warm and wet climate on the early Mars.  相似文献   

7.
Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo-sea ice feedback. This feedback is crucial in the model predictions; without it other biophysical processes may overwhelm the albedo effect to generate warming instead. Ongoing land-use activities, such as land management for climate mitigation, are occurring at local scales (hectares) presumably too small to generate the feedback, and it is not known whether the intrinsic biophysical mechanism on its own can change the surface temperature in a consistent manner. Nor has the effect of deforestation on climate been demonstrated over large areas from direct observations. Here we show that surface air temperature is lower in open land than in nearby forested land. The effect is 0.85 ± 0.44 K (mean ± one standard deviation) northwards of 45° N and 0.21 ± 0.53 K southwards. Below 35° N there is weak evidence that deforestation leads to warming. Results are based on comparisons of temperature at forested eddy covariance towers in the USA and Canada and, as a proxy for small areas of cleared land, nearby surface weather stations. Night-time temperature changes unrelated to changes in surface albedo are an important contributor to the overall cooling effect. The observed latitudinal dependence is consistent with theoretical expectation of changes in energy loss from convection and radiation across latitudes in both the daytime and night-time phase of the diurnal cycle, the latter of which remains uncertain in climate models.  相似文献   

8.
Orbital forcing of the martian polar layered deposits   总被引:4,自引:0,他引:4  
Laskar J  Levrard B  Mustard JF 《Nature》2002,419(6905):375-377
Since the first images of polar regions on Mars revealed alternating bright and dark layers, there has been speculation that their formation might be tied to the planet's orbital climate forcing. But uncertainties in the deposition timescale exceed two orders of magnitude: estimates based on assumptions of dust deposition, ice formation and sublimation, and their variations with orbital forcing suggest a deposition rate of 10(-3) to 10(-2) cm yr(-1) (refs 5, 6), whereas estimates based on cratering rate result in values as high as 0.1 to 0.2 cm yr(-1) (ref. 7). Here we use a combination of high-resolution images of the polar layered terrains, high-resolution topography and revised calculations of the orbital and rotational parameters of Mars to show that a correlation exists between ice-layer radiance as a function of depth (obtained from photometric data of the images of the layered terrains) and the insolation variations in summer at the martian north pole, similar to what has been shown for palaeoclimate studies of the Earth. For the best fit between the radiance profile and the simulated insolation parameters, we obtain an average deposition rate of 0.05 cm yr(-1) for the top 250 m of deposits on the ice cap of the north pole of Mars.  相似文献   

9.
The nature of the martian south polar cap has remained enigmatic since the first spacecraft observations. In particular, the presence of a perennial carbon dioxide ice cap, the formation of a vast area of black 'slab ice' known as the Cryptic region and the asymmetric springtime retreat of the cap have eluded explanation. Here we present observations and climate modelling that indicate the south pole of Mars is characterized by two distinct regional climates that are the result of dynamical forcing by the largest southern impact basins, Argyre and Hellas. The style of surface frost deposition is controlled by these regional climates. In the cold and stormy conditions that exist poleward of 60 degrees S and extend 180 degrees in longitude west from the Mountains of Mitchel (approximately 30 degrees W), surface frost accumulation is dominated by precipitation. In the opposite hemisphere, the polar atmosphere is relatively warm and clear and frost accumulation is dominated by direct vapour deposition. It is the differences in these deposition styles that determine the cap albedo.  相似文献   

10.
Baratoux D  Toplis MJ  Monnereau M  Gasnault O 《Nature》2011,472(7343):338-341
Reconstruction of the geological history of Mars has been the focus of considerable attention over the past four decades, with important discoveries being made about variations in surface conditions. However, despite a significant increase in the amount of data related to the morphology, mineralogy and chemistry of the martian surface, there is no clear global picture of how magmatism has evolved over time and how these changes relate to the internal workings and thermal evolution of the planet. Here we present geochemical data derived from the Gamma Ray Spectrometer on board NASA's Mars Odyssey spacecraft, focusing on twelve major volcanic provinces of variable age. Our analysis reveals clear trends in composition that are found to be consistent with varying degrees of melting of the martian mantle. There is evidence for thickening of the lithosphere (17-25?km?Gyr(-1)) associated with a decrease in mantle potential temperature over time (30-40?K?Gyr(-1)). Our inferred thermal history of Mars, unlike that of the Earth, is consistent with simple models of mantle convection.  相似文献   

11.
Recent ice ages on Mars   总被引:1,自引:0,他引:1  
A key pacemaker of ice ages on the Earth is climatic forcing due to variations in planetary orbital parameters. Recent Mars exploration has revealed dusty, water-ice-rich mantling deposits that are layered, metres thick and latitude dependent, occurring in both hemispheres from mid-latitudes to the poles. Here we show evidence that these deposits formed during a geologically recent ice age that occurred from about 2.1 to 0.4 Myr ago. The deposits were emplaced symmetrically down to latitudes of approximately 30 degrees--equivalent to Saudi Arabia and the southern United States on the Earth--in response to the changing stability of water ice and dust during variations in obliquity (the angle between Mars' pole of rotation and the ecliptic plane) reaching 30-35 degrees. Mars is at present in an 'interglacial' period, and the ice-rich deposits are undergoing reworking, degradation and retreat in response to the current instability of near-surface ice. Unlike the Earth, martian ice ages are characterized by warmer polar climates and enhanced equatorward transport of atmospheric water and dust to produce widespread smooth deposits down to mid-latitudes.  相似文献   

12.
The ubiquitous atmospheric dust on Mars is well mixed by periodic global dust storms, and such dust carries information about the environment in which it once formed and hence about the history of water on Mars. The Mars Exploration Rovers have permanent magnets to collect atmospheric dust for investigation by instruments on the rovers. Here we report results from M?ssbauer spectroscopy and X-ray fluorescence of dust particles captured from the martian atmosphere by the magnets. The dust on the magnets contains magnetite and olivine; this indicates a basaltic origin of the dust and shows that magnetite, not maghemite, is the mineral mainly responsible for the magnetic properties of the dust. Furthermore, the dust on the magnets contains some ferric oxides, probably including nanocrystalline phases, so some alteration or oxidation of the basaltic dust seems to have occurred. The presence of olivine indicates that liquid water did not play a dominant role in the processes that formed the atmospheric dust.  相似文献   

13.
Observations of martian surface morphology have been used to argue that an ancient ocean once existed on Mars. It has been thought that significant quantities of such water could have been supplied to the martian surface through volcanic outgassing, but this suggestion is contradicted by the low magmatic water content that is generally inferred from chemical analyses of igneous martian meteorites. Here, however, we report the distributions of trace elements within pyroxenes of the Shergotty meteorite--a basalt body ejected 175 million years ago from Mars--as well as hydrous and anhydrous crystallization experiments that, together, imply that water contents of pre-eruptive magma on Mars could have been up to 1.8%. We found that in the Shergotty meteorite, the inner cores of pyroxene minerals (which formed at depth in the martian crust) are enriched in soluble trace elements when compared to the outer rims (which crystallized on or near to the martian surface). This implies that water was present in pyroxenes at depth but was largely lost as pyroxenes were carried to the surface during magma ascent. We conclude that ascending magmas possibly delivered significant quantities of water to the martian surface in recent times, reconciling geologic and petrologic constraints on the outgassing history of Mars.  相似文献   

14.
High-resolution subsurface water-ice distributions on Mars   总被引:1,自引:0,他引:1  
Bandfield JL 《Nature》2007,447(7140):64-67
Theoretical models indicate that water ice is stable in the shallow subsurface (depths of <1-2 m) of Mars at high latitudes. These models have been mainly supported by the observed presence of large concentrations of hydrogen detected by the Gamma Ray Spectrometer suite of instruments on the Mars Odyssey spacecraft. The models and measurements are consistent with a water-ice table that steadily increases in depth with decreasing latitude. More detailed modelling has predicted that the depth at which water ice is stable can be highly variable, owing to local surface heterogeneities such as rocks and slopes, and the thermal inertia of the ground cover. Measurements have, however, been limited to the footprint (several hundred kilometres) of the Gamma Ray Spectrometer suite, preventing the observations from documenting more detailed water-ice distributions. Here I show that by observing the seasonal temperature response of the martian surface with the Thermal Emission Imaging System on the Mars Odyssey spacecraft, it is possible to observe such heterogeneities at subkilometre scale. These observations show significant regional and local water-ice depth variability, and, in some cases, support distributions in the subsurface predicted by atmospheric exchange and vapour diffusion models. The presence of water ice where it follows the depth of stability under current climatic conditions implies an active martian water cycle that responds to orbit-driven climate cycles. Several regions also have apparent deviations from the theoretical stability level, indicating that additional factors influence the ice-table depth. The high-resolution measurements show that the depth to the water-ice table is highly variable within the potential Phoenix spacecraft landing ellipses, and is likely to be variable at scales that may be sampled by the spacecraft.  相似文献   

15.
Martian stepped-delta formation by rapid water release   总被引:1,自引:0,他引:1  
Kraal ER  van Dijk M  Postma G  Kleinhans MG 《Nature》2008,451(7181):973-976
Deltas and alluvial fans preserved on the surface of Mars provide an important record of surface water flow. Understanding how surface water flow could have produced the observed morphology is fundamental to understanding the history of water on Mars. To date, morphological studies have provided only minimum time estimates for the longevity of martian hydrologic events, which range from decades to millions of years. Here we use sand flume studies to show that the distinct morphology of martian stepped (terraced) deltas could only have originated from a single basin-filling event on a timescale of tens of years. Stepped deltas therefore provide a minimum and maximum constraint on the duration and magnitude of some surface flows on Mars. We estimate that the amount of water required to fill the basin and deposit the delta is comparable to the amount of water discharged by large terrestrial rivers, such as the Mississippi. The massive discharge, short timescale, and the associated short canyon lengths favour the hypothesis that stepped fans are terraced delta deposits draped over an alluvial fan and formed by water released suddenly from subsurface storage.  相似文献   

16.
Hydrogen radicals are produced in the martian atmosphere by the photolysis of water vapour and subsequently initiate catalytic cycles that recycle carbon dioxide from its photolysis product carbon monoxide. These processes provide a qualitative explanation for the stability of the atmosphere of Mars, which contains 95 per cent carbon dioxide. Balancing carbon dioxide production and loss based on our current understanding of the gas-phase chemistry in the martian atmosphere has, however, proven to be difficult. Interactions between gaseous chemical species and ice cloud particles have been shown to be key factors in the loss of polar ozone observed in the Earth's stratosphere, and may significantly perturb the chemistry of the Earth's upper troposphere. Water-ice clouds are also commonly observed in the atmosphere of Mars and it has been suggested previously that heterogeneous chemistry could have an important impact on the composition of the martian atmosphere. Here we use a state-of-the-art general circulation model together with new observations of the martian ozone layer to show that model simulations that include chemical reactions occurring on ice clouds lead to much improved quantitative agreement with observed martian ozone levels in comparison with model simulations based on gas-phase chemistry alone. Ozone is readily destroyed by hydrogen radicals and is therefore a sensitive tracer of the chemistry that regulates the atmosphere of Mars. Our results suggest that heterogeneous chemistry on ice clouds plays an important role in controlling the stability and composition of the martian atmosphere.  相似文献   

17.
对中全新世(6,ka时期)海洋和气候的研究可加深人们对现阶段气候变化和海洋环境的认识,为预测未来海洋与气候环境变化提供一个重要参照.文章分析一个耦合气候系统模式FGOALS-s2.0的模式结果,首先对其工业革命前(0,ka时期)东亚地区夏季降水及冬、夏季10,m风场的模拟结果进行评估,然后进一步对中全新世和工业革命前黄、东海海表大气强迫的季节变化进行了对比.结果显示:模式模拟出0,ka时期东亚夏季降水从东南洋面至西北内陆减少的空间分布特点,冬、夏季10,m风场亦与观测大体一致;6,ka时期夏季,黄、东海风速较0,ka时期增大约0.8,m/s,16%左右;黄海风应力旋度值为正,东海为负,与0,ka时期相比旋度绝对值均增大;同时,两海区接收的太阳短波辐射较0,ka时期均增加,短波辐射的差异是中全新世夏季黄、东海海表的净热吸收增加的主要因子.6,ka时期冬季,黄、东海北风加强,东海增加量在0.5~1.0,m/s,幅度约为10%,较黄海更为明显;两海区在冬季的净热释放也较0,ka时期增大,东海释放更甚;冬季黄、东海风应力旋度较0,ka时期则无太大差别.研究表明,由于6,ka时期太阳辐射季节循环的改变,造成了黄、东海夏季风增强,海表净热通量也发生相应变化,该时期大气强迫场的变化可能会使黄、东海表层水温分布趋势发生较大改变,进而影响陆架环流格局.  相似文献   

18.
Perennial water ice identified in the south polar cap of Mars   总被引:1,自引:0,他引:1  
The inventory of water and carbon dioxide reservoirs on Mars are important clues for understanding the geological, climatic and potentially exobiological evolution of the planet. From the early mapping observation of the permanent ice caps on the martian poles, the northern cap was believed to be mainly composed of water ice, whereas the southern cap was thought to be constituted of carbon dioxide ice. However, recent missions (NASA missions Mars Global Surveyor and Odyssey) have revealed surface structures, altimetry profiles, underlying buried hydrogen, and temperatures of the south polar regions that are thermodynamically consistent with a mixture of surface water ice and carbon dioxide. Here we present the first direct identification and mapping of both carbon dioxide and water ice in the martian high southern latitudes, at a resolution of 2 km, during the local summer, when the extent of the polar ice is at its minimum. We observe that this south polar cap contains perennial water ice in extended areas: as a small admixture to carbon dioxide in the bright regions; associated with dust, without carbon dioxide, at the edges of this bright cap; and, unexpectedly, in large areas tens of kilometres away from the bright cap.  相似文献   

19.
Shevenell AE  Ingalls AE  Domack EW  Kelly C 《Nature》2011,470(7333):250-254
The disintegration of ice shelves, reduced sea-ice and glacier extent, and shifting ecological zones observed around Antarctica highlight the impact of recent atmospheric and oceanic warming on the cryosphere. Observations and models suggest that oceanic and atmospheric temperature variations at Antarctica's margins affect global cryosphere stability, ocean circulation, sea levels and carbon cycling. In particular, recent climate changes on the Antarctic Peninsula have been dramatic, yet the Holocene climate variability of this region is largely unknown, limiting our ability to evaluate ongoing changes within the context of historical variability and underlying forcing mechanisms. Here we show that surface ocean temperatures at the continental margin of the western Antarctic Peninsula cooled by 3-4 °C over the past 12,000 years, tracking the Holocene decline of local (65° S) spring insolation. Our results, based on TEX(86) sea surface temperature (SST) proxy evidence from a marine sediment core, indicate the importance of regional summer duration as a driver of Antarctic seasonal sea-ice fluctuations. On millennial timescales, abrupt SST fluctuations of 2-4 °C coincide with globally recognized climate variability. Similarities between our SSTs, Southern Hemisphere westerly wind reconstructions and El Ni?o/Southern Oscillation variability indicate that present climate teleconnections between the tropical Pacific Ocean and the western Antarctic Peninsula strengthened late in the Holocene epoch. We conclude that during the Holocene, Southern Ocean temperatures at the western Antarctic Peninsula margin were tied to changes in the position of the westerlies, which have a critical role in global carbon cycling.  相似文献   

20.
Impact erosion of the primordial atmosphere of Mars   总被引:2,自引:0,他引:2  
Melosh HJ  Vickery AM 《Nature》1989,338(6215):487-489
Abundant geomorphic evidence for fluvial processes on the surface of Mars suggests that during the era of heavy bombardment, Mars's atmospheric pressure was high enough for liquid water to flow on the surface. Many authors have proposed mechanisms by which Mars could have lost (or sequestered) an earlier, thicker atmosphere but none of these proposals has gained general acceptance. Here we examine the process of atmospheric erosion by impacts and show that it may account for an early episode of atmosphere loss from Mars. On the basis of this model, the primordial atmospheric pressure on Mars must have been in the vicinity of 1 bar, barring other sources or sinks of CO2. Current impact fluxes are too small to erode significantly the present martian atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号