首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 243 毫秒
1.
为探究粉尘爆炸在工业除尘管网中的传播规律,基于1m3粉尘爆炸测试系统和自主设计的双侧分支结构管道,对双侧分支结构管道内玉米淀粉爆炸火焰传播速度和超压峰值的变化规律展开研究.实验结果表明:三种粉尘质量浓度下,火焰在主管道内的传播速度随传播距离增加均呈持续上升趋势,双侧分支结构对火焰传播具有弱化作用,且距离点火端越近,弱化作用越显著;双侧分支结构的安装位置会影响管道内超压峰值,其在距离点火端较近时呈持续衰减趋势,距离点火端较远时呈先快速下降后上升再缓慢衰减趋势.以上研究为除尘系统的防爆设计提供参考和依据.  相似文献   

2.
利用1个球形容器和3节相同尺寸的圆形管道建立了实验系统,并开展相关实验,研究容器内气体爆炸带导管泄爆过程的机制。结果表明:安装泄爆导管增加了容器爆炸强度;破膜激波使导管入口处压力上升,射流火焰点燃导管入口处未燃气体产生二次爆炸,导致容器内及导管入口处压力突变;一定范围内,导管长度越长,容器及管道内的压力峰值越大;有导管存在时,尾部点火容器内的压力峰值及导管入口处的压力峰值都高于中心点火的情况,且尾部点火导管前部分的火焰传播速率高于中心点火的情况;无论尾部点火还是中心点火导管入口处的压力峰值都高于导管出口处的压力峰值。  相似文献   

3.
对不同开口率的管道内丙烷-空气预混火焰传播规律进行了数值模拟.结果表明:随着管道开口率的增加,管道内最大爆炸超压值迅速降低,当开口率大于30%时,爆炸超压值下降速率减小,即开口率大于30%时泄爆效果区别不明显;开口情况下,最大爆炸超压值出现在点火端附近,靠近开口处时爆炸超压逐渐下降,而闭口情况下最大爆炸超压出现在管道两端.  相似文献   

4.
为了研究球形容器泄爆及其外部伤害效应,利用小球容器和大球容器建立了2种尺寸的球形容器泄爆测试系统。在研究球形容器泄爆内部压力变化特性时,利用大、小球容器分别开展了无膜泄爆和泄爆片泄爆2种实验,得到了如下结论:当大、小球容器泄爆时,随着泄爆口直径的增加,最大泄爆压力减小,压力上升速率减小,正压持续时间减小;当无量纲化泄压比较小时,无膜泄爆峰值压力随泄压比的增大而减小,且呈线性变化。在研究球形容器泄爆外部伤害效应时,分别进行了大、小球容器压力伤害范围实验,获取了大、小球容器泄爆口周围空间不同位置处的压力峰值,并结合超压伤害阈值标准,判断其对人员的伤害作用,从而划定了压力伤害的范围。  相似文献   

5.
为有效抑制瓦斯爆炸冲击波及火焰传播,构建大尺度圆形管道实验装置,对瓦斯预混爆炸过程中泡沫陶瓷对冲击波和火焰传播抑制特性进行研究.结果表明:泡沫陶瓷能够吸收瓦斯爆炸冲击波能量,对火焰和冲击波传播抑制效果明显,泡沫陶瓷挡板厚度及设置层数、位置是典型影响因素.挡板设置位置距点火端距离十分重要,其临界值应为起爆期间火焰传播速度达到最大值位置以内,进而实现对瓦斯爆炸传播与发展的有效抑制.对比双层和单层挡板布置的实验结果,双层布置时冲击波最大超压下降更快.但是,挡板厚度的影响并不明显.设置厚度为50 mm或30 mm的挡板时,测得最大超压的沿程衰减趋势一致,大小也很相近.  相似文献   

6.
通过改变点火线圈的充电时间,研究了充电时间与天然气空气预混合气点火能量、预混层流燃烧速度及压力和放热率等燃烧特性参数之间的关系.结果表明:点火能量随充电时间的增加而增大,当充电时间增加到6 ms时,点火能量的增加趋势减缓;点火能量能会影响火核的形成和初期火焰的发展,当火核半径发展到8mm时,火焰传播速度不受影响;压力峰值随点火能量的增加逐渐增大且峰值位置提前,当充电时间由2 ms增加到8 ms时,最大压力峰值增加了3.8%,峰值提前8.6 ms出现,火焰发展期和快速燃烧期分别缩短了5.2 ms和1.7ms.  相似文献   

7.
为研究点火位置对甲烷-空气预混泄爆容器结构响应的影响,利用自主搭建的甲烷泄爆容器结构响应测试系统,研究不同点火位置条件下的甲烷-空气预混气体泄爆作用下的舱体结构响应特性,结合内部超压、火焰演化和固有频率等特征探究点火位置对泄爆容器结构响应的影响机制。研究表明:泄爆过程中容器振动响应和内部超压均出现双峰值,点火位置的改变对两峰值的影响规律不同。点火位置的改变对容器内部火焰前期的发育、传播及内部超压特性有着一定的影响,泄爆初期容器低幅值振动响应受点火位置的影响较为有限。泄爆后期的高幅值振动响应随点火位置远离泄爆口而快速降低,底部点火泄爆时高幅值振动响应消失,为热声不稳定现象因点火位置的不同受到抑制。泄爆口附近点火将有较大幅值的振动响应以及更大能量的高频振荡。研究成果有助于全面地分析泄爆容器及其附属装置受爆炸冲击后的振动损伤状态,评估可能存在的损伤模式等。  相似文献   

8.
利用Fluent软件对连通容器泄爆过程中的气体爆炸流场进行数值模拟,获得气体爆炸过程的温度场和压力场,模拟结果能较清晰地反映泄爆过程。研究表明:连通容器泄爆时起爆容器的火焰高度均高于传爆容器,容器内温度随着泄爆时间的延长逐渐上升,泄爆口开启后又迅速下降;在泄爆初期,起爆容器的压力均低于传爆容器的压力,小球内压力衰减速度大于大球内压力衰减速度。  相似文献   

9.
为研究气体爆炸泄爆收容过程中爆炸容器和收容容器内的压力变化规律及其影响因素,对球形容器在不同收容容器和爆炸容器体积比以及不同导管长度条件下的泄爆收容过程经行了实验研究。结果表明:收容容器体积越大,爆炸容器的压力峰值越小,爆炸压力下降的速度越快;收容容器的体积达到或超过爆炸容器体积的5倍时,接近敞开泄爆的压力峰值;泄爆导管的长度越长,爆炸容器的压力峰值越小;收容泄爆时,火焰的传播速率随着导管传播距离增加而降低,泄爆口处火焰传播速率最高。  相似文献   

10.
为研究丝网结构对容器管道开口系统气体爆炸的影响,通过改变丝网结构的层数和目数,对连接有一段管道的球形容器进行实验。研究发现,当系统处于开口状态时,在管道处加入具有抑爆效果的丝网后,容器内最大泄爆压力增大,且最大泄爆压力随着丝网层数以及丝网目数的增加而增大。建立数学模型对容器内部最大泄爆压力进行拟合,通过拟合公式发现,丝网层数对容器管道开口系统气体爆炸时的最大泄爆压力有一定的影响,并且开始时最大泄爆压力随着丝网层数的增加而增加,随后丝网结构对最大泄爆压力的影响逐渐减小,最大泄爆压力趋于稳定。  相似文献   

11.
针对管道中距离U型管不同位置处的竖直向上环状流轴向液膜分布,基于平面激光诱导荧光(PLIF)技术,设计并搭建了内径为25 mm的气液两相流循环装置,采用高速摄影获取距离U型管不同位置处的液膜荧光图像,并通过数字图像处理技术进行特征提取.结果表明:当距离U型管达到25倍管径时,U型管对液膜发展及分布影响显著降低;将获得的平均液膜厚度数据与液膜厚度经典预测模型进行对比分析,表明在此距离时竖直向上环状流液膜发展及分布稳定.  相似文献   

12.
为了研究瓦斯爆炸的压力与温度特性,利用矩形管道装置对不同体积分数的瓦斯进行爆炸实验。采用压力传感器和微细热电偶测量爆炸过程中压力与温度的变化,并结合高速摄像仪采集火焰传播图像。研究结果表明:该管道内最大爆炸压力、最大爆炸压力上升速率以及火焰温度峰值都随瓦斯体积分数的增加呈先增加后减小的趋势,到达最大爆炸压力的时间随瓦斯体积分数的增加呈先减小后增大的趋势。该管道上部燃烧比下部燃烧剧烈,下部火焰温度峰值与瓦斯体积分数呈4次函数表达式。在瓦斯爆炸火焰传播过程中,火焰峰面会发生变化,当瓦斯体积分数越接近10%时,越易形成"Tulip"火焰峰面;当瓦斯体积分数为10%时,火焰最明亮,最大爆炸压力和火焰温度峰值都取得最大值,分别为0.74 MPa和1 704.26℃。  相似文献   

13.
在实验室小型模拟巷道的方形管道内,采用自制的微细热电偶和离子电流传感器、压电式压力传感器,测试了有/无障碍物2种情况下在不同位置处浓度为10.17%甲烷空气预混火焰锋面的传播过程中温度、离子电流强度及压力变化情况。实验结果表明,障碍物存在导致火焰锋面的最高温度值略有降低,由靠近点火端位置的1 303.7℃下降到1 234.4℃,远离点火端位置的1 198.7℃下降到902.5℃;离子电流曲线出现了明显的双峰值,强度明显增大,由靠近点火端的146.25nA上升到160nA,远离点火端的432.5nA上升到605nA;火焰锋面前方过早的产生前驱压力波,加速燃烧转爆轰(DDT)过程的提前实现。因此,巷道内应避免障碍物的存在。  相似文献   

14.
随着燃气管道数量和规模的增加,由于燃气泄漏至相邻地下空间导致燃气爆炸的事故日益突出。为了研究天然气管道泄漏后气体在土壤和地下空间耦合下的扩散过程及规律,本文采用COMSOL软件中建立燃气管道泄漏在土壤和阀门井中扩散的数学模型,分别研究不同管道压力、土壤孔隙率、泄漏口到阀门井水平距离对燃气泄漏扩散的影响,结果表明:随着管道压力和土壤孔隙率的增加,阀门井内甲烷摩尔分数到达爆炸下限的时间相应减小;不同孔隙率条件下阀门井内甲烷摩尔分数差值逐渐稳定在一个定值;泄漏位置距离地下空间小于12.5 m时,阀门井内甲烷摩尔分数到达爆炸下限的时间小于7天,距离大于12.5 m时阀门井内甲烷摩尔分数到达爆炸下限需要一周以上的时间。  相似文献   

15.
根据油藏渗流与变形耦合作用理论,应用三维有限元模拟软件,对注水井泄压过程中井底套管内流体压力与地层中孔隙压力巨大压差导致套管外载的增加进行计算模拟.以实测岩石和套管强度参数为依据,采用调整地层压力、渗透率、有效厚度等条件,对不同泄压速度产生的压力变化规律进行了研究.研究结果表明,在其他地层条件都相同的条件下,渗透率越低,放喷相同流量时套管承受的挤压力越大;压差越大,套管承受的挤压力越大.由泄压与套管挤压力关系图版可以确定注水井作业、测试、洗井等过程中的允许泄压速度界限,控制该界限能防止套管损坏.  相似文献   

16.
由于在脉冲爆轰发动机进口端设置微孔可有效促进爆轰起爆,故通过高速相机拍摄在初始压力为10–100kPa下等当量比丙烷/氧气的火焰传播过程研究了毫米级圆管中缓燃向爆轰转捩(deflagration to detonation transition,DDT)距离,实验在长为1930mm,管径分别为0.5、1、2、4mm的管道中进行。实验结果表明:面积发散(ξ)效应导致DDT距离与管径和初始压力不同的变化关系,当初压低于60kPa以下时,DDT距离与管径呈线性关系,而当初压在60kPa以上时,DDT距离大致在100-200mm,随管径的变化并不明显。而在同一管径下,DDT距离随初始压力的增大而减小且呈现反比关系,这与大尺度下DDT距离与初压的关系相似。最后,通过讨论边界层厚度对DDT距离的影响得到区分大小尺度DDT模式的临界值。  相似文献   

17.
不同压力煤油气溶胶点火延时的测量研究   总被引:1,自引:0,他引:1  
研究不同压力(0.1,0.3,0.6 MPa)的化学计量比煤油/空气溶胶点火延时.研制了新型两相激波管,采用室温He/N2为驱动气体和缝合接触面运行,反应区温度范围是1 160~1 650 K,基于压电传感器和数据采集系统,测量了不同点压力时间曲线,以OH(波长约306 nm)发射光作为点火指示信号,用ICCD拍摄反射激波后的燃烧流场.结果表明:当压力为0.1 MPa、温度为1 068 K,可获得实验时间约19 ms.本文条件下,测得煤油点火延时τig约0.1~6 ms.与加热方式相比,煤油气溶胶在低温时点火延时偏大.不同初压的ln(τig)与10 000/T均呈线性分布.压力测量显示:当压力为0.1 MPa、温度大于1 500 K,点火过程中出现了当地爆燃,伴随明显的压力振荡,出现爆燃的当地温度随初压升高而降低.对低温自点火工况,煤油火焰面呈非平面结构.在反射激波后,出现随机分布的自点火区域.随着温度升高,自点火呈平面火焰结构.  相似文献   

18.
在工业生产中,除尘器内经常发生爆炸灾害事故,给安全生产带来了严重的挑战。为探究除尘器内发生爆炸时爆炸超压演化及爆炸火焰传播的规律,基于球形爆炸装置对烟草粉尘的实验数据,构建了大规模爆炸仿真软件FLACS的烟草粉尘爆炸模块,进而实现了对带管道除尘器内爆炸及传播过程的数值仿真。模拟结果表明:除尘器内部发生爆炸时,内部的粉尘质量浓度、点火位置、管道形状均对爆炸过程有一定影响。在500~1000 g/m~3范围内,除尘器内粉尘质量浓度越大,爆炸超压越大,火焰传播速度越快;点火位置离管道入口越远,爆炸超压越大,火焰传播速度越快;管道若设置有折弯结构,火焰经过该部分后,可以一定程度上减弱爆炸超压和火焰传播的速度。  相似文献   

19.
高压氢气泄漏并发生点火是氢火灾事故的核心场景,也是氢安全研究的基本内容。该文对高压氢气泄漏后立即点火、延迟点火以及有防护墙存在时的延时点火3种场景进行了数值模拟仿真,分析了点火时间、防护墙对温度和超压的影响。结果表明:氢气泄漏后在喷口处立即点燃会形成射流火焰,该过程不会产生明显的超压;泄漏一段时间后再进行点火,将由点火中心产生压力波并向外传播,并随着与点火中心距离的增大,最大超压降低,燃烧稳定后形成的射流火焰与立即点火时基本一致;防护墙有效削弱了压力波及火焰向墙后方的传播,墙后方的超压及温度明显降低。因此,合理设置防护墙可以缩小危险范围,缩短安全距离。  相似文献   

20.
利用AutoReaGas软件对封闭的长直管道内瓦斯爆炸进行了数值模拟,研究了瓦斯的浓度对爆炸超压影响的规律. 在此基础上,进一步研究了障碍物个数和阻塞比对瓦斯爆炸超压和火焰传播速度的影响. 数值结果表明,在无障碍物的管道中,当瓦斯浓度为化学当量浓度时,爆炸超压值最大;在带有障碍物的管道中,火焰速度值随着障碍物数量的增加先增大后减小;当障碍物个数一定时,最大爆炸超压和火焰速度随阻塞比增大而增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号