共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
van Ommen GJ 《Nature genetics》2005,37(4):333-334
3.
Different species, populations and individuals vary considerably in the copy number of discrete segments of their genomes. The manner and frequency with which these genetic differences arise over generational time is not well understood. Taking advantage of divergence among lineages sharing a recent common ancestry, we have conducted a genome-wide analysis of spontaneous copy number variation (CNV) in the laboratory mouse. We used high-resolution microarrays to identify 38 CNVs among 14 colonies of the C57BL/6 strain spanning approximately 967 generations of inbreeding, and we examined these loci in 12 additional strains. It is clear from our results that many CNVs arise through a highly nonrandom process: 18 of 38 were the product of recurrent mutation, and rates of change varied roughly four orders of magnitude across different loci. Recurrent CNVs are found throughout the genome, affect 43 genes and fluctuate in copy number over mere hundreds of generations, observations that raise questions about their contribution to natural variation. 相似文献
4.
Jackson-Grusby L Beard C Possemato R Tudor M Fambrough D Csankovszki G Dausman J Lee P Wilson C Lander E Jaenisch R 《Nature genetics》2001,27(1):31-39
Cytosine methylation of mammalian DNA is essential for the proper epigenetic regulation of gene expression and maintenance of genomic integrity. To define the mechanism through which demethylated cells die, and to establish a paradigm for identifying genes regulated by DNA methylation, we have generated mice with a conditional allele for the maintenance DNA methyltransferase gene Dnmt1. Cre-mediated deletion of Dnmt1 causes demethylation of cultured fibroblasts and a uniform p53-dependent cell death. Mutational inactivation of Trp53 partially rescues the demethylated fibroblasts for up to five population doublings in culture. Oligonucleotide microarray analysis showed that up to 10% of genes are aberrantly expressed in demethylated fibroblasts. Our results demonstrate that loss of Dnmt1 causes cell-type-specific changes in gene expression that impinge on several pathways, including expression of imprinted genes, cell-cycle control, growth factor/receptor signal transduction and mobilization of retroelements. 相似文献
5.
Cooper GM Coe BP Girirajan S Rosenfeld JA Vu TH Baker C Williams C Stalker H Hamid R Hannig V Abdel-Hamid H Bader P McCracken E Niyazov D Leppig K Thiese H Hummel M Alexander N Gorski J Kussmann J Shashi V Johnson K Rehder C Ballif BC Shaffer LG Eichler EE 《Nature genetics》2011,43(9):838-846
To understand the genetic heterogeneity underlying developmental delay, we compared copy number variants (CNVs) in 15,767 children with intellectual disability and various congenital defects (cases) to CNVs in 8,329 unaffected adult controls. We estimate that ~14.2% of disease in these children is caused by CNVs >400 kb. We observed a greater enrichment of CNVs in individuals with craniofacial anomalies and cardiovascular defects compared to those with epilepsy or autism. We identified 59 pathogenic CNVs, including 14 new or previously weakly supported candidates, refined the critical interval for several genomic disorders, such as the 17q21.31 microdeletion syndrome, and identified 940 candidate dosage-sensitive genes. We also developed methods to opportunistically discover small, disruptive CNVs within the large and growing diagnostic array datasets. This evolving CNV morbidity map, combined with exome and genome sequencing, will be critical for deciphering the genetic basis of developmental delay, intellectual disability and autism spectrum disorders. 相似文献
6.
Guryev V Saar K Adamovic T Verheul M van Heesch SA Cook S Pravenec M Aitman T Jacob H Shull JD Hubner N Cuppen E 《Nature genetics》2008,40(5):538-545
The abundance and dynamics of copy number variants (CNVs) in mammalian genomes poses new challenges in the identification of their impact on natural and disease phenotypes. We used computational and experimental methods to catalog CNVs in rat and found that they share important functional characteristics with those in human. In addition, 113 one-to-one orthologous genes overlap CNVs in both human and rat, 80 of which are implicated in human disease. CNVs are nonrandomly distributed throughout the genome. Chromosome 18 is a cold spot for CNVs as well as evolutionary rearrangements and segmental duplications, suggesting stringent selective mechanisms underlying CNV genesis or maintenance. By exploiting gene expression data available for rat recombinant inbred lines, we established the functional relationship of CNVs underlying 22 expression quantitative trait loci. These characteristics make the rat an excellent model for studying phenotypic effects of structural variation in relation to human complex traits and disease. 相似文献
7.
8.
Assembly of microarrays for genome-wide measurement of DNA copy number. 总被引:20,自引:0,他引:20
A M Snijders N Nowak R Segraves S Blackwood N Brown J Conroy G Hamilton A K Hindle B Huey K Kimura S Law K Myambo J Palmer B Ylstra J P Yue J W Gray A N Jain D Pinkel D G Albertson 《Nature genetics》2001,29(3):263-264
We have assembled arrays of approximately 2,400 BAC clones for measurement of DNA copy number across the human genome. The arrays provide precise measurement (s.d. of log2 ratios=0.05-0.10) in cell lines and clinical material, so that we can reliably detect and quantify high-level amplifications and single-copy alterations in diploid, polyploid and heterogeneous backgrounds. 相似文献
9.
10.
Perry GH Dominy NJ Claw KG Lee AS Fiegler H Redon R Werner J Villanea FA Mountain JL Misra R Carter NP Lee C Stone AC 《Nature genetics》2007,39(10):1256-1260
Starch consumption is a prominent characteristic of agricultural societies and hunter-gatherers in arid environments. In contrast, rainforest and circum-arctic hunter-gatherers and some pastoralists consume much less starch. This behavioral variation raises the possibility that different selective pressures have acted on amylase, the enzyme responsible for starch hydrolysis. We found that copy number of the salivary amylase gene (AMY1) is correlated positively with salivary amylase protein level and that individuals from populations with high-starch diets have, on average, more AMY1 copies than those with traditionally low-starch diets. Comparisons with other loci in a subset of these populations suggest that the extent of AMY1 copy number differentiation is highly unusual. This example of positive selection on a copy number-variable gene is, to our knowledge, one of the first discovered in the human genome. Higher AMY1 copy numbers and protein levels probably improve the digestion of starchy foods and may buffer against the fitness-reducing effects of intestinal disease. 相似文献
11.
McCarroll SA Kuruvilla FG Korn JM Cawley S Nemesh J Wysoker A Shapero MH de Bakker PI Maller JB Kirby A Elliott AL Parkin M Hubbell E Webster T Mei R Veitch J Collins PJ Handsaker R Lincoln S Nizzari M Blume J Jones KW Rava R Daly MJ Gabriel SB Altshuler D 《Nature genetics》2008,40(10):1166-1174
Dissecting the genetic basis of disease risk requires measuring all forms of genetic variation, including SNPs and copy number variants (CNVs), and is enabled by accurate maps of their locations, frequencies and population-genetic properties. We designed a hybrid genotyping array (Affymetrix SNP 6.0) to simultaneously measure 906,600 SNPs and copy number at 1.8 million genomic locations. By characterizing 270 HapMap samples, we developed a map of human CNV (at 2-kb breakpoint resolution) informed by integer genotypes for 1,320 copy number polymorphisms (CNPs) that segregate at an allele frequency >1%. More than 80% of the sequence in previously reported CNV regions fell outside our estimated CNV boundaries, indicating that large (>100 kb) CNVs affect much less of the genome than initially reported. Approximately 80% of observed copy number differences between pairs of individuals were due to common CNPs with an allele frequency >5%, and more than 99% derived from inheritance rather than new mutation. Most common, diallelic CNPs were in strong linkage disequilibrium with SNPs, and most low-frequency CNVs segregated on specific SNP haplotypes. 相似文献
12.
Schizophrenia is an etiologically heterogeneous psychiatric disease, which exists in familial and nonfamilial (sporadic) forms. Here, we examine the possibility that rare de novo copy number (CN) mutations with relatively high penetrance contribute to the genetic component of schizophrenia. We carried out a whole-genome scan and implemented a number of steps for finding and confirming CN mutations. Confirmed de novo mutations were significantly associated with schizophrenia (P = 0.00078) and were collectively approximately 8 times more frequent in sporadic (but not familial) cases with schizophrenia than in unaffected controls. In comparison, rare inherited CN mutations were only modestly enriched in sporadic cases. Our results suggest that rare de novo germline mutations contribute to schizophrenia vulnerability in sporadic cases and that rare genetic lesions at many different loci can account, at least in part, for the genetic heterogeneity of this disease. 相似文献
13.
SNP genotyping has emerged as a technology to incorporate copy number variants (CNVs) into genetic analyses of human traits. However, the extent to which SNP platforms accurately capture CNVs remains unclear. Using independent, sequence-based CNV maps, we find that commonly used SNP platforms have limited or no probe coverage for a large fraction of CNVs. Despite this, in 9 samples we inferred 368 CNVs using Illumina SNP genotyping data and experimentally validated over two-thirds of these. We also developed a method (SNP-Conditional Mixture Modeling, SCIMM) to robustly genotype deletions using as few as two SNP probes. We find that HapMap SNPs are strongly correlated with 82% of common deletions, but the newest SNP platforms effectively tag about 50%. We conclude that currently available genome-wide SNP assays can capture CNVs accurately, but improvements in array designs, particularly in duplicated sequences, are necessary to facilitate more comprehensive analyses of genomic variation. 相似文献
14.
15.
Brest P Lapaquette P Souidi M Lebrigand K Cesaro A Vouret-Craviari V Mari B Barbry P Mosnier JF Hébuterne X Harel-Bellan A Mograbi B Darfeuille-Michaud A Hofman P 《Nature genetics》2011,43(3):242-245
Susceptibility to Crohn's disease, a complex inflammatory disease, is influenced by common variants at many loci. The common exonic synonymous SNP (c.313C>T) in IRGM, found in strong linkage disequilibrium with a deletion polymorphism, has been classified as non-causative because of the absence of an alteration in the IRGM protein sequence or splice sites. Here we show that a family of microRNAs (miRNAs), miR-196, is overexpressed in the inflammatory intestinal epithelia of individuals with Crohn's disease and downregulates the IRGM protective variant (c.313C) but not the risk-associated allele (c.313T). Subsequent loss of tight regulation of IRGM expression compromises control of intracellular replication of Crohn's disease-associated adherent invasive Escherichia coli by autophagy. These results suggest that the association of IRGM with Crohn's disease arises from a miRNA-based alteration in IRGM regulation that affects the efficacy of autophagy, thereby implicating a synonymous polymorphism as a likely causal variant. 相似文献
16.
17.
18.
DNA methylation represses transcription in vivo. 总被引:9,自引:0,他引:9
19.
Adams DJ Dermitzakis ET Cox T Smith J Davies R Banerjee R Bonfield J Mullikin JC Chung YJ Rogers J Bradley A 《Nature genetics》2005,37(5):532-536
Inbred mouse strains provide the foundation for mouse genetics. By selecting for phenotypic features of interest, inbreeding drives genomic evolution and eliminates individual variation, while fixing certain sets of alleles that are responsible for the trait characteristics of the strain. Mouse strains 129Sv (129S5) and C57BL/6J, two of the most widely used inbred lines, diverged from common ancestors within the last century, yet very little is known about the genomic differences between them. By comparative genomic hybridization and sequence analysis of 129S5 short insert libraries, we identified substantial structural variation, a complex fine-scale haplotype pattern with a continuous distribution of diversity blocks, and extensive nucleotide variation, including nonsynonymous coding SNPs and stop codons. Collectively, these genomic changes denote the level and direction of allele fixation that has occurred during inbreeding and provide a basis for defining what makes these mouse strains unique. 相似文献
20.
Genome-wide transcription analyses in rice using tiling microarrays 总被引:18,自引:0,他引:18
Li L Wang X Stolc V Li X Zhang D Su N Tongprasit W Li S Cheng Z Wang J Deng XW 《Nature genetics》2006,38(1):124-129