首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
本文根据异型钢轧制变形理论,分析了在万能轧机上四辊孔型中轧制 H 型材时轧件的变形。文中在模拟试验基础上确定出 H 型钢腿部高度的变形量及其变化规律。  相似文献   

2.
本文对无孔型轧制时轧件展宽进行了实验研究和理论分析,在定量分析歪斜轧件轧制时轧件单侧展宽的基础上,采用刚-塑性材料变分原理对歪斜轧件的轧制变形过程进行了解析,通过曲线拟合将最接近真实速度场的数值解表示成了具体的函数表达式,推导了无孔型轧制时轧件宽展系数的理论计算公式。理论计算的结果与实验结果符合很好。  相似文献   

3.
棒材切分轧制过程中三维弹塑性有限元模拟   总被引:1,自引:0,他引:1  
采用三维弹塑性有限元法对棒钢三线切分轧制过程的金属变形区进行了模拟。通过建立数学模型和计算,对切分轧件的变形特征、应力与应变进行了分析,提出了预切孔金属流动变形的稳定性问题。如果预切孔内轧件的变形过大,切分楔附近的金属网格发生了很大的扭曲畸变,造成变形不均匀和金属的流动不稳定。根据模拟分析的结果,设计了直径为Φ12mm带肋钢筋的三线切分孔型系统,轧制生产实验结果表明:采用优化的新切分孔型系统进行生产,提高了轧机的生产率,改善了产品质量。  相似文献   

4.
多道次立-平辊轧制轧件角部金属流动状态有限元模拟   总被引:3,自引:2,他引:3  
利用显式动力学有限元方法和几何模型更新方法对平立辊、内导角半径50 mm孔型辊8、0 mm孔型辊三种情况下,多道次立-平辊轧制过程进行了模拟,分析了三种立辊情况下,轧件角部金属的流动情况.得出在既定轧制规程下,采用平立辊时,轧件角部金属被翻边至轧件水平面上;采用孔型立辊时,轧件角部金属保留在轧件水平面与侧面的交线上.  相似文献   

5.
研究了异型扁坯热轧成型过程及筋部充满规律。结果表明,异型扁坯经三道次热轧即可成型;第一、二道次轧制过程中,在轧件轧前宽度一定时,轧件腿部压下量存在临界值,当腿部压下量小于该值时,筋部孔型充满度随轧件腿部压下量的增加而明显增加并趋势近于1,随轧件轧前宽度的增加孔型充满度线性增加,但增长幅度较小;第三道次筋部孔型充满度受轧件腿部压下量和轧件宽度的影响很小。  相似文献   

6.
立-平轧制过程轧件角部裂纹的扩展与愈合   总被引:1,自引:0,他引:1  
采用显式动力学有限元方法和几何模型更新技术,对立平交替轧制过程中轧件角部裂纹的扩展与愈合进行了数值模拟.研究了平辊身立辊和带孔型立辊两种条件下,轧件角部表面横向裂纹的形状变化、裂纹内侧面接触压力变化、裂纹表面节点的位置变化.模拟结果表明:采用平辊身立辊轧制时,轧件角部裂纹愈合较好,而采用带孔型立辊时,轧件角部裂纹在平轧后,可能再一次被拉开.模拟结果与实验结果趋势一致,研究结果对预报热轧过程中板坯的边部裂纹出现、提高产品的边部质量有参考价值.  相似文献   

7.
根据某公司梯形筛条产品规格要求,制定了三辊Y型轧机4道次孔型系统及其轧制方案。为研究此轧制工艺下轧件成形规律并预测成品尺寸,借助于ANSYS/LS-DYNA有限元软件,建立了4道次筛条的轧制过程三维有限元模型并进行仿真,获得了轧制过程金属流动规律,包括金属纵向流动、金属横向流动和力能参数,包括应力、应变和轧制力参数,验证了所设计的孔型系统的可行性。结果显示,可在机架间增加导位装置,减少轧件应力集中,提高轧制稳定性及成品率,为新产品孔型系统的优化改进提供了参考。  相似文献   

8.
本文以轧制过程相似理论为依据,在实验室轧钢机上模拟研究了用2~3个蝶式孔型轧制角钢的变形规律并归纳出轧制工艺要点,以及建立了计算变形量的数学模型。数学模型已经过NO.2.5~7角钢孔型设计的实践检验,证明具有较高的精确度。生产实际证实:采用2~3个蝶式孔型的孔型系统能实现稳定轧制并获得NO.2.5~7用钢。由最少蝶式孔型组成的孔型系统具有简化轧辊车削、节约轧辊和容易调整等优点。  相似文献   

9.
针对目前钛合金棒材生产现状,提出了一种新的棒材连轧孔型系统,即正三角平孔型+二辊圆孔型+正三角平孔型+二辊圆孔型系统。分析了失稳轧件在孔型中的受力情况,以及导卫装置对连轧稳定性的影响,获得了改善连轧过程轧件失稳的主要因素,优化了轧机孔型系统。用弹塑性有限元方法模拟了棒材的四道次连轧过程,并与其它孔型系统进行比较。结果表明,提出的孔型系统综合了二辊孔型与三辊孔型的特点,连轧稳定性相对较好,从而解决了Y型轧机棒材连轧过程稳定性问题。  相似文献   

10.
辊型对半固态变形影响的三维有限元分析   总被引:1,自引:0,他引:1  
采用多孔材料的几何模型,利用MARC有限元软件对弹簧钢60Si2Mn半固态轧制过程进行了三维有限元模拟,分析了在平辊和孔型轧制条件下的应力、应变场。在孔型中轧制,轧件变形区横截面上应力、应变场分布均匀。模拟结果与实验结果相吻合,说明半固态材料适合在孔型中轧制。  相似文献   

11.
根据钢管斜轧过程的变形特点,利用ANSYS/LS-DYNA有限元软件对Accu-Roll轧管机热轧奥氏体无缝钢管的轧制过程进行有限元数值模拟.通过模拟仿真计算,分析无缝钢管截面的变形特点及轧制力和应力应变分布的变化规律,通过将模拟结果与实测数据进行比较,验证了模型的可靠性.模拟结果表明,在轧制过程中孔型形状不当易造成双鼓形,整个轧制过程中最大轧制应力为403.4 MPa,最大等效应力值为231.8 MPa.  相似文献   

12.
椭圆孔型轧制合金钢方坯三维弹塑性有限元模拟   总被引:8,自引:0,他引:8  
为设计安全合理的合金钢椭圆孔型系统,采用三维热力耦合弹塑性有限元模拟仿真技术,超前再现了合金钢方坯在椭圆孔型中金属的三维流动过程并获得了轧制力及力矩等重要参数的变化规律.结果表明:表面和心部金属沿轧制方向流动速率的不同导致合金钢方坯端部横断面产生凹形;轧制力和轴向力及轧制力矩和径向力矩具有相似的变化趋势,即咬入和抛钢阶段其值变化较大而稳定轧制阶段变化较小.  相似文献   

13.
利用特厚规格复合板与较薄规格复合板进行非对称组坯,采用ABAQUS有限元软件对其热轧过程中的应变、接触应力及温度分布进行计算,并通过温度补偿及冷却控制的手段,对热轧非对称复合坯的可行性进行模拟分析。结果表明,采用非对称组坯设计,有利于特厚复合板碳钢层与不锈钢层在各道次轧制中的界面结合;通过控制复合坯上、下表面的温差,能有效改善板坯翘曲现象,并可一次性获得一块宽幅特厚复合板与一块宽幅较薄规格复合板,提高生产效率;此外,采用非对称组坯设计还可实现控轧控冷,保证芯部不锈钢与碳钢的协同变形,促进其界面结合。  相似文献   

14.
结合国内某厂6机架热连轧精轧机组实际条件,选取典型产品制定了带钢轧制过程中板形急停后的测量实验方案.根据此方案进行了测量实验,得到带钢机架间板凸度实测值.结合轧制过程中各道次轧制力、弯辊力及辊形曲线等实际数据,采用基于影响函数法的四辊轧机辊系弹性变形软件针对该典型产品的板形控制过程进行计算,分析了轧辊平均凸度计算值与设定值之间存在偏差的原因.将带钢机架间横向厚度分布的计算值与实测值进行比较,二者吻合较好.  相似文献   

15.
利用轧卡实验研究热轧低碳钢表面氧化铁皮在无酸洗冷轧过程中的断裂行为.结果表明,由于带钢在靠近辊缝处的弹性变形,带钢表面的氧化铁皮受拉应力作用发生断裂,裂纹垂直于轧制方向,越靠近辊缝裂纹密度越大.单道次轧制压下量小于16%时,氧化铁皮只发生断裂;压下量超过16%时,氧化铁皮开始出现脱落,当氧化铁皮受力超过其界面附着强度时,将发生氧化铁皮从带钢表面剥离和粉碎.同样的总压下量条件下,多轧制道次有利于保护氧化铁皮的完整性.  相似文献   

16.
高硼钢的组织与性能   总被引:7,自引:0,他引:7  
用真空感应炉制备硼分布均匀的高硼钢,分析了其铸态和热轧态的显微组织.钛的加入减少了在晶界处析出的铁硼相Fe2B,FeB的数量,改善了其在GB的分布状态.钛硼相TiB2弥散地分布在铁素体基体上.确定了高硼钢热轧成形的合理工艺参数为加热温度1080~1120℃,初轧温度1070~1110℃,终轧温度810~850℃,道次压下量约10%~20%.采用多道次循环轧制,随后的冷却方式为空冷.热轧后高硼钢的力学性能得到明显提高.  相似文献   

17.
结合现场轧制工艺条件,采用大型非线性有限元软件对大规格轴承钢棒材连轧工艺进行数值模拟,主要分析大规格轴承钢棒材在热连轧过程中各道次等效应变场和轧制力分布情况。结果表明,大规格轴承钢棒材在各道次轧制过程中的变形区域主要集中在轧件的表层,芯部等效应变较小;各道次之间轧制力急剧变化不利于轧制工艺的改善,同时也会对轧制设备提出更高的要求;各道次轧制力分布不均匀主要是由现场轧制工艺规程中各道次轧件压下量分配不当造成的。  相似文献   

18.
在普通热轧机上利用累积叠轧焊工艺对普碳钢Q235进行了实验研究,重点研究了压下量(最大压下量98%)、循环轧制次数等工艺参数对Q235钢组织及性能的影响规律.结果表明:在普通热轧机上应用累积叠轧焊工艺对同种材料进行焊合,不仅可以获得连续、均匀的结合组织,而且使Q235钢的组织得到明显的细化,夹杂物分布更加均匀,材料的强度大幅度提高,抗拉强度达800MPa以上.  相似文献   

19.
冷弯型钢是广泛应用的型材,其轧制质量由孔型决定。现有的孔型设计主要依靠经验公式和经验参数,所以设计的孔型往往需要实际修正。笔者提出的方法可以为设计孔型提供理论依据,可以减少大量的数据冗余。特征有限条中的接触性特征有限条能够较好地解析钢带的变形过程,对孔型设计的智能化起着指导性的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号