首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 107 毫秒
1.
深井钻井具有高温高压及地层压力和地层破裂压力间安全钻井液密度窗口极为狭窄的特点,这为在深井钻井过程中保持井眼系统的压力平衡提出了更高的要求。为此,针对深井钻井的特点,运用流变学、传热学和物质平衡的基本原理,建立钻井液循环和静止状况下的钻井液温度分布模式及高温高压密度模式和高温高压流变模式,应用这些模式和地层流体的PVT特性对一些实钻深井的溢流现象进行分析。结果表明,井眼水力系统流体热力学模型对深井、超深井的压力平衡控制至关重要。  相似文献   

2.
针对目前钻井井喷关井期间井筒压力计算值与实际关井压力差别较大的问题,将关井期间井筒压力变化分为两部分:关井初期地层流体继续侵入井筒的续流部分和气液密度差导致气体滑脱上升部分,从渗流理论和试井理论出发,考虑关井期间井筒内气体和钻井液的压缩性以及井筒的弹性,建立关井期间井筒续流模型;从气液两相流理论出发,考虑关井气体滑脱上升期间气体的膨胀、气体和钻井液压缩性、井筒弹性以及钻井液滤失等因素,建立关井期间气体滑脱模型;然后考虑关井期间井筒续流和气体滑脱综合影响,建立关井期间井筒压力计算模型,并给出基于本模型的气侵关井井筒压力读取方法。结果表明:关井初期井底压力呈指数增加,井底压力大于地层压力之后井底压力呈线性增加;关井初期井筒续流起主导作用,井底压力大于地层压力之后气体滑脱效应起主导作用。  相似文献   

3.
对现有深井井身结构设计中安全密度窗口约束条件进行分析,发现井涌允量、破裂压力安全系数、抽吸压力系数等经验性安全系数的取值较为保守,且没有考虑循环钻进时防漏的约束条件,这对深井尤其是下部安全密度窗口窄的井钻井不利。通过引入含可信度的地层压力剖面以及附加钻井液密度和抽吸压力的计算分析,使安全密度窗口的上下限得以精确确定,在此基础上加入考虑环空压耗当量密度的约束条件,并给出迭代计算方法,解决了环空压耗计算中需要井身结构参数的难题,避免了深井循环钻进过程中的井漏问题,进而形成了一套基于含可信度地层压力剖面的、适用于深井的精细井身结构设计方法,可以有效避免深井中由于钻井液密度设计不合理导致的井下复杂事故的发生,且其设计结果具备一定的风险控制功能,有利于结合现场实际对设计进行风险控制。  相似文献   

4.
考虑相界面雷诺应力、拖拽力、虚拟质量力、气液物性差异等参数,创建井筒多相压力波速及压力响应数学模型,基于超深井环空多相压力波响应图版唯一性,提出压力波响应图版识别超深井气侵位置的新方法;考虑井口气体溢流量、回压、钻井液密度等边界参数,结合差分数学方法对其求解,该方法在超深井YS1井(8 680 m)验证,压力响应误差小于等于1.703 s,计算与实测误差小于等于6.15%。结果表明:随回压增大,井筒流体可压缩性减小,井筒压力波速增大,压力响应时间减小;随井口气体溢流量增大,环空空隙率增大,压力波速减小,井筒压力响应时间延长,井口气体溢流量从0.83 L/min变化至38.33 L/min,井底8 680 m处压力响应时间从10.127 s增至36.643 s,增大了261.83%;气侵位置识别结果不仅取决于井口压力及流量传感器准确度,也与压力波响应图版计算准确性有关;实践证明借助压力波响应图版识别超深井气侵溢流位置的方法可行。  相似文献   

5.
赵向阳 《科学技术与工程》2013,13(15):4334-4338
高温深井中,钻井液密度是温度和压力的函数,高温会使井眼中的钻井液发生膨胀,密度降低,而在深井中的高压则会压缩钻井液,使密度增加。随着井深的增加,钻井液密度不再是一个常数。用地面恒定的测试结果计算井下当量循环密度,使计算结果和井下压力测试结果存在差异,对于窄安全密度窗口的高温深井,对井控存在一定的安全隐患。因此,建立准确的钻井液高温高压密度预测模型,确保钻井液静压和动压计算准确,能够为钻井工程技术人员合理调配钻井液性能参数和控制钻井参数提供准确的参考数据和依据,从而减少复杂事故的发生。这对井下压力的精确计算具有重要意义。首先对影响钻井液密度的敏感因素:温度、压力、岩屑溶度和井口回压进行了理论分析;然后通过水的高温高压密度数据,利用多元非线性回归分析,建立了水基钻井液高温高压密度预测模型。现场实测数据验证,吻合较好,相比经验模型,使用方便、实用。  相似文献   

6.
深层页岩气水平井钻井过程井筒瞬态循环温度对旋转导向工具的选择具有重要作用。基于井筒与地层间的对流换热机理及能量守恒原理,建立了井筒瞬态温度场模型;分析了循环时间、排量、水平段长度和入口温度对井筒瞬态温度的影响;优选了页岩气水平井轨迹控制方法,提出了降低井底循环温度的工程措施。结果表明,上部井段环空钻井液循环温度随循环时间和排量的增加而增加,而下部井段环空钻井液循环温度反而降低;随着水平段长度增加,环空钻井液循环温度增加,水平段越长,循环降温效果越低;随着钻井液入口温度增加,钻井液出口温度增加,下部井段环空钻井液循环温度随入口温度的变化较小。当垂深超过4 000 m后,水平段较短时,可采用旋转导向钻井工具;水平段较长,井底循环温度高于135℃后,推荐采用螺杆配LWD测量工具。采用增加循环时间、排量及边循环边下钻的方式可降低井底循环温度,以确保旋转导向工具和LWD工具处于安全工作温度内。  相似文献   

7.
超深稠油自喷井掺稀深度优化研究   总被引:1,自引:1,他引:0  
朱明 《科学技术与工程》2011,(26):6290-6293
超深稠油井在生产初期地层压力高、原油黏度大,通过开式反掺稀油降黏工艺能使油井自喷生产,该工艺存在一个合理的掺稀深度。结合开式反掺稀油降黏工艺的实际情况,通过分段建立井筒温度场模型,筛选黏度计算模型和井筒压降计算模型,综合考虑掺稀深度对启动压力、流动困难点、井筒温度场、压力场等因素的影响,得到一种掺稀深度优化设计方法,利用该方法对西部油田A井进行掺稀深度优化,得到了最优掺稀深度。  相似文献   

8.
为克服深层海相碳酸盐岩地层长水平段钻井作业过程中的井下高温问题,结合深层海相碳酸盐岩气藏长水平段钻井过程的特点,建立了综合考虑多源项、非牛顿流体螺旋流动、变热物性参数的钻井井筒瞬态温度分布数值模型。基于该模型,研究了水平段长度、循环时间、钻井液排量、入口温度对井筒温度分布的影响规律。结果表明:随着水平段长度的增加,井底温度会显著增加;增加循环时间、增加循环排量、降低钻井液入口温度等措施对降低深层长水平段井底温度的作用有限。可见,为保障深层碳酸盐岩油气资源开发的顺利进行,须提高旋转导向工具的耐温极限。  相似文献   

9.
基于均质平衡流模型,根据动量方程和能量方程建立了计算泡沫流体在井筒内流动时的密度、压力和温度分布的耦合数学模型,并进行了编程求解,给出了泡沫流体的压力、温度和密度沿井深的分布规律。计算分析表明,泡沫流体在井筒内流动时的密度、压力和温度是相互影响的。泡沫质量越大,泡沫流体的温度变化越大,而压力和密度变化则相对平缓。在将泡沫流体应用于深井作业时,不能忽略温度变化对泡沫参数及性能的影响,特别是在大泡沫质量下。由于考虑了传热和温度变化对泡沫流体的影响,该模型比常规计算方法的适用范围更广。  相似文献   

10.
对影响水平井水平段延伸能力的因素进行了分析,然后根据钻井液流体力学理论,建立了水平井循环压耗计算模型,分别对水平井总循环压耗和水平段环空压耗进行计算,进而求出了水平井水平段极限延伸长度值;对钻井液密度、钻井泵额定压力、岩屑床高度和钻井液排量对水平段水力延伸能力的影响进行了分析。研究表明,水平段水力延伸能力受钻井液密度、钻井泵额定压力、岩屑床高度和钻井液排量等多个因素共同影响。为了提高深井水平井的延伸能力,应使用较低密度的钻井液;尽量保持较低的岩屑床高度;钻井液排量应尽量小。同时还认识到,深井水平井水力延伸能力主要受到钻井泵额定压力的制约。研发高额定压力的钻井泵,是提高深井水平井水力延伸能力的主要措施。  相似文献   

11.
大位移井在深部地层的油气藏开采中得到了广泛应用,但同时面临着井眼清洁不充分、托压、卡钻等一系列问题,为了更好地指导超深大位移井的井眼清洁工作,需要进一步对超深大位移井的长裸眼段的岩屑动态运移特性进行研究。建立了考虑实际井眼轨迹、流体压降及悬浮层颗粒扩散的大位移井两层岩屑运移动态模型。该模型利用有限差分法进行求解,并利用已有文献的实验结果进行验证。对钻井和冲洗两种工况进行模拟研究,认识钻井液排量、钻井液密度、机械钻速、井眼半径等方面对岩屑运移的影响。研究结果表明:在钻井工况下,井斜角越小的井段,岩屑越难以沉积,且钻井液排量越高、钻井液密度越高、井眼尺寸越小、钻速越低,岩屑运移的效率越高;在冲洗工况下,井斜角越小,冲蚀效果越差,且钻井液排量越高、钻井液密度越高、井眼尺寸越小,岩屑运移的效率越高。研究结果对保障超深大位移井良好的井眼清洁具有指导意义。  相似文献   

12.
对钻柱振动和冲击的控制是井眼轨道优化设计、钻井参数优选、提高钻速及实现智能钻井的重要基础。在深 水、超深水,深井、超深井,页岩气硬脆性地层及气体钻井作业中,要用到丛式井、定向井等特殊钻井工艺,这些复杂井 建井过程中由钻柱振动和冲击造成的损失日益增加。系统阐述和对比了钻柱振动和冲击的表现形式及评价方法。将 钻柱振动和冲击分为被动控制、主动控制和半主动控制3 方面,归纳和分类探讨了近年来核心控制方法及关键控制设 备的结构、原理,给出代表性的成果,对比分析了相应方法特点、设备及适应范围,设计了钻柱振动和冲击控制程序, 探讨了未来重点研究的方向。  相似文献   

13.
冀中坳陷潜山内幕油气藏钻井过程常面临恶性井漏、井塌和卡钻等复杂情况。通过对华北油田冀中坳陷20余口井的地质工程等资料进行分析,总结了潜山内幕油气藏影响井壁稳定因素:下第三系地层稳定性差(硬脆性泥页岩易垮塌,微米级微裂缝极为发育,岩性复杂多变和地层存在多套压力系统),潜山内幕碳酸盐岩储层孔洞裂缝极为发育,断层和潜山风化壳形成破碎带以及深层井底高温影响。针对井壁稳定影响因素提出相应技术措施:增强钻井液对下第三系硬脆性泥页岩的抑制和封堵性,其中对微裂缝的封堵是关键,异常压力和复杂岩性段要合理设计井身结构,优化钻具组合;碳酸盐地层重点是强化裂缝封堵,且密度是防漏控制因素,与地层压力近平衡的低密度水包油乳化钻井液防漏效果好;利用软化点适当及粒度分布合适的可变形封堵材料对破碎地层形成快速封堵并适当提高钻井液密度有利于井壁稳定;对井底高温情况要选用合适的抗高温钻井液体系,关键要维护好高温高压条件下钻井液的性能,提高其抗温能力,维持高温高压下胶体稳定,稳定流变性能和滤失量。  相似文献   

14.
深水窄压力窗口地层给下套管带来了巨大挑战,下套管时产生的波动压力将导致井筒压力超过压力窗口上限而出现井漏,大大增加了作业时间,采用传统方法下套管时为了防止波动压力过大而超过安全压力窗口只能降低下套管速度,这样虽然在一定程度上减小漏失风险但增大了作业成本,且这种方式不一定有效。因此,针对深水窄安全压力窗口地层下套管漏失风险问题,基于动态波动压力建立了深水窄安全压力窗口井筒压力控制模型;并在此基础上提出深水精细控压下套管方法。利用建立的模型分析井筒压力影响因素发现,井筒压力随着套管下入深度、最大下入速度、钻井液密度以及钻井液的屈服值、黏度的增大而增大。计算表明,深水精细控压下套管不但降低了漏失风险,还缩短了作业时间,降低了作业成本。  相似文献   

15.
 锦州25-1油田沙河街组地层井壁失稳严重,为解决该油田的井壁失稳问题,对该油田的泥页岩矿物组分进行了分析,开展了泥页岩的力学及水化特性实验,分析了锦州25-1油田沙河街组泥页岩的岩石力学特性和井壁失稳机制.研究发现,沙河街组地层层理性泥页岩和水敏性泥页岩共同发育;层理性泥页岩具有显著的各向异性,易发生沿层理面的剪切滑移,造成井壁失稳;水敏性泥页岩在钻井液作用下会发生水化膨胀,导致井周地层的力学性质和应力状态发生变化,表现为坍塌压力随井眼钻开时间的改变而改变;两种地层相互影响造成油田复杂事故频发.结合室内实验结果,建立了合理钻井液密度的确定方法,研究了锦州25-1油田层理性泥页岩坍塌压力随井眼轨迹的分布规律和水敏性泥页岩的水化坍塌周期,给出了保证安全钻进的工程对策,该油田的井壁失稳问题必须在优化井眼轨迹和选择合理钻井液密度基础上,并增强钻井液的封堵性和抑制性才能解决.  相似文献   

16.
 井筒温度和压力场计算是深水海底泵举升钻井设计的重要内容.综合考虑温压场与泥浆性能,特别是泥浆流变性能的相互影响,建立深水海底泵举升钻井井筒传热和流动耦合计算模型,并与常规隔水管钻井计算结果进行比对.结果表明:受海水低温影响,上部井段环空温度小于入口温度,海底泵举升钻井井筒温度小于常规隔水管钻井,需注意低温时天然气水合物形成带来的安全隐患;海水段和地层段压力存在不同的压力梯度,地面泵压小于循环压耗,海底泵举升钻井井筒压力小于常规隔水管钻井;考虑泥浆密度和泥浆流变性能变化对井筒温度、ECD 和泵压均有影响,相对来说,ECD 受前者影响较大,而井筒温度场和泵压受后者影响较大;两者都考虑,泵压计算误差将大大降低.  相似文献   

17.
脉冲式增压器增压特性研究   总被引:1,自引:1,他引:0  
由于深井、超深井数量的增加,传统机械式钻头破岩钻井已无法满足钻井效率需求。为此设计了脉冲式增压器用以提高深井、超深井钻井效率,降低钻井成本。基于所设计的增压器的结构和工作原理,考虑螺杆转速、高压喷嘴直径、钻井液密度和冲程等因素对增压效果的影响,建立数学模型。在此基础之上,考虑脉冲式增压器不发生自锁的条件,并分别分析转速、钻井液密度、高压喷嘴直径和冲程对增压频率、喷嘴流速和增压压力的影响。得到增压器各影响因素与增压特性之间的关系。旨在为设计的增压器提供理论支撑与优化依据。结论认为:高压喷嘴流速和增压压力随着螺杆转速、冲程的增大而增大,并且增压特性较好。随着高压喷嘴直径的增大出口流速和增压压力明显降低,增压能力明显变弱。随着钻井液密度增大,出口流速和增压压力稍微增大,其对增压特性影响不明显。喷嘴高压射流频率仅受转速影响,随着转速增大而增大。要想获得较好增压特性,螺杆转速应不低于100 r/min,活塞行程不低于25 mm,高压喷嘴直径不大于1.4 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号