首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 844 毫秒
1.
Quantum information science involves the storage, manipulation and communication of information encoded in quantum systems, where the phenomena of superposition and entanglement can provide enhancements over what is possible classically. Large-scale quantum information processors require stable and addressable quantum memories, usually in the form of fixed quantum bits (qubits), and a means of transferring and entangling the quantum information between memories that may be separated by macroscopic or even geographic distances. Atomic systems are excellent quantum memories, because appropriate internal electronic states can coherently store qubits over very long timescales. Photons, on the other hand, are the natural platform for the distribution of quantum information between remote qubits, given their ability to traverse large distances with little perturbation. Recently, there has been considerable progress in coupling small samples of atomic gases through photonic channels, including the entanglement between light and atoms and the observation of entanglement signatures between remotely located atomic ensembles. In contrast to atomic ensembles, single-atom quantum memories allow the implementation of conditional quantum gates through photonic channels, a key requirement for quantum computing. Along these lines, individual atoms have been coupled to photons in cavities, and trapped atoms have been linked to emitted photons in free space. Here we demonstrate the entanglement of two fixed single-atom quantum memories separated by one metre. Two remotely located trapped atomic ions each emit a single photon, and the interference and detection of these photons signals the entanglement of the atomic qubits. We characterize the entangled pair by directly measuring qubit correlations with near-perfect detection efficiency. Although this entanglement method is probabilistic, it is still in principle useful for subsequent quantum operations and scalable quantum information applications.  相似文献   

2.
Sub-poissonian loading of single atoms in a microscopic dipole trap.   总被引:1,自引:0,他引:1  
N Schlosser  G Reymond  I Protsenko  P Grangier 《Nature》2001,411(6841):1024-1027
The ability to manipulate individual atoms, ions or photons allows controlled engineering of the quantum state of small sets of trapped particles; this is necessary to encode and process information at the quantum level. Recent achievements in this direction have used either trapped ions or trapped photons in cavity quantum-electrodynamical systems. A third possibility that has been studied theoretically is to use trapped neutral atoms. Such schemes would benefit greatly from the ability to trap and address individual atoms with high spatial resolution. Here we demonstrate a method for loading and detecting individual atoms in an optical dipole trap of submicrometre size. Because of the extremely small trapping volume, only one atom can be loaded at a time, so that the statistics of the number of atoms in the trap, N, are strongly sub-poissonian (DeltaN2 approximately 0.5N). We present a simple model for describing the observed behaviour, and we discuss the possibilities for trapping and addressing several atoms in separate traps, for applications in quantum information processing.  相似文献   

3.
When two indistinguishable single photons are fed into the two input ports of a beam splitter, the photons will coalesce and leave together from the same output port. This is a quantum interference effect, which occurs because two possible paths-in which the photons leave by different output ports-interfere destructively. This effect was first observed in parametric downconversion (in which a nonlinear crystal splits a single photon into two photons of lower energy), then from two separate downconversion crystals, as well as with single photons produced one after the other by the same quantum emitter. With the recent developments in quantum information research, much attention has been devoted to this interference effect as a resource for quantum data processing using linear optics techniques. To ensure the scalability of schemes based on these ideas, it is crucial that indistinguishable photons are emitted by a collection of synchronized, but otherwise independent sources. Here we demonstrate the quantum interference of two single photons emitted by two independently trapped single atoms, bridging the gap towards the simultaneous emission of many indistinguishable single photons by different emitters. Our data analysis shows that the observed coalescence is mainly limited by wavefront matching of the light emitted by the two atoms, and to a lesser extent by the motion of each atom in its own trap.  相似文献   

4.
Keller M  Lange B  Hayasaka K  Lange W  Walther H 《Nature》2004,431(7012):1075-1078
The controlled production of single photons is of fundamental and practical interest; they represent the lowest excited quantum states of the radiation field, and have applications in quantum cryptography and quantum information processing. Common approaches use the fluorescence of single ions, single molecules, colour centres and semiconductor quantum dots. However, the lack of control over such irreversible emission processes precludes the use of these sources in applications (such as quantum networks) that require coherent exchange of quantum states between atoms and photons. The necessary control may be achieved in principle in cavity quantum electrodynamics. Although this approach has been used for the production of single photons from atoms, such experiments are compromised by limited trapping times, fluctuating atom-field coupling and multi-atom effects. Here we demonstrate a single-photon source based on a strongly localized single ion in an optical cavity. The ion is optimally coupled to a well-defined field mode, resulting in the generation of single-photon pulses with precisely defined shape and timing. We have confirmed the suppression of two-photon events up to the limit imposed by fluctuations in the rate of detector dark counts. The stream of emitted photons is uninterrupted over the storage time of the ion, as demonstrated by a measurement of photon correlations over 90 min.  相似文献   

5.
Over the past decade, strong interactions of light and matter at the single-photon level have enabled a wide set of scientific advances in quantum optics and quantum information science. This work has been performed principally within the setting of cavity quantum electrodynamics with diverse physical systems, including single atoms in Fabry-Perot resonators, quantum dots coupled to micropillars and photonic bandgap cavities and Cooper pairs interacting with superconducting resonators. Experiments with single, localized atoms have been at the forefront of these advances with the use of optical resonators in high-finesse Fabry-Perot configurations. As a result of the extreme technical challenges involved in further improving the multilayer dielectric mirror coatings of these resonators and in scaling to large numbers of devices, there has been increased interest in the development of alternative microcavity systems. Here we show strong coupling between individual caesium atoms and the fields of a high-quality toroidal microresonator. From observations of transit events for single atoms falling through the resonator's evanescent field, we determine the coherent coupling rate for interactions near the surface of the resonator. We develop a theoretical model to quantify our observations, demonstrating that strong coupling is achieved, with the rate of coherent coupling exceeding the dissipative rates of the atom and the cavity. Our work opens the way for investigations of optical processes with single atoms and photons in lithographically fabricated microresonators. Applications include the implementation of quantum networks, scalable quantum logic with photons, and quantum information processing on atom chips.  相似文献   

6.
A microscopic quantum system under continuous observation exhibits at random times sudden jumps between its states. The detection of this quantum feature requires a quantum non-demolition (QND) measurement repeated many times during the system's evolution. Whereas quantum jumps of trapped massive particles (electrons, ions or molecules) have been observed, this has proved more challenging for light quanta. Standard photodetectors absorb light and are thus unable to detect the same photon twice. It is therefore necessary to use a transparent counter that can 'see' photons without destroying them. Moreover, the light needs to be stored for durations much longer than the QND detection time. Here we report an experiment in which we fulfil these challenging conditions and observe quantum jumps in the photon number. Microwave photons are stored in a superconducting cavity for times up to half a second, and are repeatedly probed by a stream of non-absorbing atoms. An atom interferometer measures the atomic dipole phase shift induced by the non-resonant cavity field, so that the final atom state reveals directly the presence of a single photon in the cavity. Sequences of hundreds of atoms, highly correlated in the same state, are interrupted by sudden state switchings. These telegraphic signals record the birth, life and death of individual photons. Applying a similar QND procedure to mesoscopic fields with tens of photons should open new perspectives for the exploration of the quantum-to-classical boundary.  相似文献   

7.
Techniques to facilitate controlled interactions between single photons and atoms are now being actively explored. These techniques are important for the practical realization of quantum networks, in which multiple memory nodes that utilize atoms for generation, storage and processing of quantum states are connected by single-photon transmission in optical fibres. One promising avenue for the realization of quantum networks involves the manipulation of quantum pulses of light in optically dense atomic ensembles using electromagnetically induced transparency (EIT, refs 8, 9). EIT is a coherent control technique that is widely used for controlling the propagation of classical, multi-photon light pulses in applications such as efficient nonlinear optics. Here we demonstrate the use of EIT for the controllable generation, transmission and storage of single photons with tunable frequency, timing and bandwidth. We study the interaction of single photons produced in a 'source' ensemble of 87Rb atoms at room temperature with another 'target' ensemble. This allows us to simultaneously probe the spectral and quantum statistical properties of narrow-bandwidth single-photon pulses, revealing that their quantum nature is preserved under EIT propagation and storage. We measure the time delay associated with the reduced group velocity of the single-photon pulses and report observations of their storage and retrieval.  相似文献   

8.
Solid-state superconducting circuits are versatile systems in which quantum states can be engineered and controlled. Recent progress in this area has opened up exciting possibilities for exploring fundamental physics as well as applications in quantum information technology; in a series of experiments it was shown that such circuits can be exploited to generate quantum optical phenomena, by designing superconducting elements as artificial atoms that are coupled coherently to the photon field of a resonator. Here we demonstrate a lasing effect with a single artificial atom--a Josephson-junction charge qubit--embedded in a superconducting resonator. We make use of one of the properties of solid-state artificial atoms, namely that they are strongly and controllably coupled to the resonator modes. The device is essentially different from existing lasers and masers; one and the same artificial atom excited by current injection produces many photons.  相似文献   

9.
Ourjoumtsev A  Kubanek A  Koch M  Sames C  Pinkse PW  Rempe G  Murr K 《Nature》2011,474(7353):623-626
Single quantum emitters such as atoms are well known as non-classical light sources with reduced noise in the intensity, capable of producing photons one by one at given times. However, the light field emitted by a single atom can exhibit much richer dynamics. A prominent example is the predicted ability of a single atom to produce quadrature-squeezed light, which has fluctuations of amplitude or phase that are below the shot-noise level. However, such squeezing is much more difficult to observe than the emission of single photons. Squeezed beams have been generated using macroscopic and mesoscopic media down to a few tens of atoms, but despite experimental efforts, single-atom squeezing has so far escaped observation. Here we generate squeezed light with a single atom in a high-finesse optical resonator. The strong coupling of the atom to the cavity field induces a genuine quantum mechanical nonlinearity, which is several orders of magnitude larger than in typical macroscopic media. This produces observable quadrature squeezing, with an excitation beam containing on average only two photons per system lifetime. In sharp contrast to the emission of single photons, the squeezed light stems from the quantum coherence of photon pairs emitted from the system. The ability of a single atom to induce strong coherent interactions between propagating photons opens up new perspectives for photonic quantum logic with single emitters.  相似文献   

10.
Harlander M  Lechner R  Brownnutt M  Blatt R  Hänsel W 《Nature》2011,471(7337):200-203
More than 100 years ago, Hertz succeeded in transmitting signals over a few metres to a receiving antenna using an electromagnetic oscillator, thus proving the electromagnetic theory developed by Maxwell. Since this seminal work, technology has developed, and various oscillators are now available at the quantum mechanical level. For quantized electromagnetic oscillations, atoms in cavities can be used to couple electric fields. However, a quantum mechanical link between two mechanical oscillators (such as cantilevers or the vibrational modes of trapped atoms or ions) has been rarely demonstrated and has been achieved only indirectly. Examples include the mechanical transport of atoms carrying quantum information or the use of spontaneously emitted photons. Here we achieve direct coupling between the motional dipoles of separately trapped ions over a distance of 54 micrometres, using the dipole-dipole interaction as a quantum mechanical transmission line. This interaction is small between single trapped ions, but the coupling is amplified by using additional trapped ions as antennae. With three ions in each well, the interaction is increased by a factor of seven compared to the single-ion case. This enhancement facilitates bridging of larger distances and relaxes the constraints on the miniaturization of trap electrodes. The system provides a building block for quantum computers and opportunities for coupling different types of quantum systems.  相似文献   

11.
Laser cooling and trapping techniques allow us to control and manipulate neutral atoms. Here we rearrange, with submicrometre precision, the positions and ordering of laser-trapped atoms within strings by manipulating individual atoms with optical tweezers. Strings of equidistant atoms created in this way could serve as a scalable memory for quantum information.  相似文献   

12.
概述了光散射现象和几种基本的光散射类型。采用量子力学观点,把光散射看作光和物质原子的相互作用,给出了光散射的量子图像。基于量子力学理论介绍了康普顿散射、瑞利散射和拉曼散射,对它们进行了理论分析,给出了相关公式。给出了光散射的基本理论,深入讨论了这三种重要光散射现象的区别和联系,有助于了解原子或分子的相关结构。  相似文献   

13.
腔量子电动力学 (Cavity Quantum Electrodynamics,简称 Cavity QED)是研究光子与原子相互作用的一种有力工具。它从根本上揭示了原子与光场作用的动力学过程。强作用腔量子电动力学研究为量子信息科学提供了一种潜力巨大的实现量子逻辑运算的途径。本文简要介绍该研究领域的背景 ,研究现状及发展动态  相似文献   

14.
McKeever J  Boca A  Boozer AD  Buck JR  Kimble HJ 《Nature》2003,425(6955):268-271
Conventional lasers (from table-top systems to microscopic devices) typically operate in the so-called weak-coupling regime, involving large numbers of atoms and photons; individual quanta have a negligible impact on the system dynamics. However, this is no longer the case when the system approaches the regime of strong coupling for which the number of atoms and photons can become quite small. Indeed, the lasing properties of a single atom in a resonant cavity have been extensively investigated theoretically. Here we report the experimental realization of a one-atom laser operated in the regime of strong coupling. We exploit recent advances in cavity quantum electrodynamics that allow one atom to be isolated in an optical cavity in a regime for which one photon is sufficient to saturate the atomic transition. The observed characteristics of the atom-cavity system are qualitatively different from those of the familiar many-atom case. Specifically, our measurements of the intracavity photon number versus pump intensity indicate that there is no threshold for lasing, and we infer that the output flux from the cavity mode exceeds that from atomic fluorescence by more than tenfold. Observations of the second-order intensity correlation function demonstrate that our one-atom laser generates manifestly quantum (nonclassical) light, typified by photon anti-bunching and sub-poissonian photon statistics.  相似文献   

15.
Santori C  Fattal D  Vucković J  Solomon GS  Yamamoto Y 《Nature》2002,419(6907):594-597
Single-photon sources have recently been demonstrated using a variety of devices, including molecules, mesoscopic quantum wells, colour centres, trapped ions and semiconductor quantum dots. Compared with a Poisson-distributed source of the same intensity, these sources rarely emit two or more photons in the same pulse. Numerous applications for single-photon sources have been proposed in the field of quantum information, but most--including linear-optical quantum computation--also require consecutive photons to have identical wave packets. For a source based on a single quantum emitter, the emitter must therefore be excited in a rapid or deterministic way, and interact little with its surrounding environment. Here we test the indistinguishability of photons emitted by a semiconductor quantum dot in a microcavity through a Hong-Ou-Mandel-type two-photon interference experiment. We find that consecutive photons are largely indistinguishable, with a mean wave-packet overlap as large as 0.81, making this source useful in a variety of experiments in quantum optics and quantum information.  相似文献   

16.
Schr?dinger's cat is a Gedankenexperiment in quantum physics, in which an atomic decay triggers the death of the cat. Because quantum physics allow atoms to remain in superpositions of states, the classical cat would then be simultaneously dead and alive. By analogy, a 'cat' state of freely propagating light can be defined as a quantum superposition of well separated quasi-classical states-it is a classical light wave that simultaneously possesses two opposite phases. Such states play an important role in fundamental tests of quantum theory and in many quantum information processing tasks, including quantum computation, quantum teleportation and precision measurements. Recently, optical Schr?dinger 'kittens' were prepared; however, they are too small for most of the aforementioned applications and increasing their size is experimentally challenging. Here we demonstrate, theoretically and experimentally, a protocol that allows the generation of arbitrarily large squeezed Schr?dinger cat states, using homodyne detection and photon number states as resources. We implemented this protocol with light pulses containing two photons, producing a squeezed Schr?dinger cat state with a negative Wigner function. This state clearly exhibits several quantum phase-space interference fringes between the 'dead' and 'alive' components, and is large enough to become useful for quantum information processing and experimental tests of quantum theory.  相似文献   

17.
Bakr WS  Preiss PM  Tai ME  Ma R  Simon J  Greiner M 《Nature》2011,480(7378):500-503
Interaction blockade occurs when strong interactions in a confined, few-body system prevent a particle from occupying an otherwise accessible quantum state. Blockade phenomena reveal the underlying granular nature of quantum systems and allow for the detection and manipulation of the constituent particles, be they electrons, spins, atoms or photons. Applications include single-electron transistors based on electronic Coulomb blockade and quantum logic gates in Rydberg atoms. Here we report a form of interaction blockade that occurs when transferring ultracold atoms between orbitals in an optical lattice. We call this orbital excitation blockade (OEB). In this system, atoms at the same lattice site undergo coherent collisions described by a contact interaction whose strength depends strongly on the orbital wavefunctions of the atoms. We induce coherent orbital excitations by modulating the lattice depth, and observe staircase-like excitation behaviour as we cross the interaction-split resonances by tuning the modulation frequency. As an application of OEB, we demonstrate algorithmic cooling of quantum gases: a sequence of reversible OEB-based quantum operations isolates the entropy in one part of the system and then an irreversible step removes the entropy from the gas. This technique may make it possible to cool quantum gases to have the ultralow entropies required for quantum simulation of strongly correlated electron systems. In addition, the close analogy between OEB and dipole blockade in Rydberg atoms provides a plan for the implementation of two-quantum-bit gates in a quantum computing architecture with natural scalability.  相似文献   

18.
Cole BE  Williams JB  King BT  Sherwin MS  Stanley CR 《Nature》2001,410(6824):60-63
Quantum bits (qubits) are the fundamental building blocks of quantum information processors, such as quantum computers. A qubit comprises a pair of well characterized quantum states that can in principle be manipulated quickly compared to the time it takes them to decohere by coupling to their environment. Much remains to be understood about the manipulation and decoherence of semiconductor qubits. Here we show that hydrogen-atom-like motional states of electrons bound to donor impurities in currently available semiconductors can serve as model qubits. We use intense pulses of terahertz radiation to induce coherent, damped Rabi oscillations in the population of two low-lying states of donor impurities in GaAs. Our observations demonstrate that a quantum-confined extrinsic electron in a semiconductor can be coherently manipulated like an atomic electron, even while sharing space with approximately 10(5) atoms in its semiconductor host. We anticipate that this model system will be useful for measuring intrinsic decoherence processes, and for testing both simple and complex manipulations of semiconductor qubits.  相似文献   

19.
Lamas-Linares A  Howell JC  Bouwmeester D 《Nature》2001,412(6850):887-890
Entangled photon pairs-discrete light quanta that exhibit non-classical correlations-play a crucial role in quantum information science (for example, in demonstrations of quantum non-locality, quantum teleportation and quantum cryptography). At the macroscopic optical-field level non-classical correlations can also be important, as in the case of squeezed light, entangled light beams and teleportation of continuous quantum variables. Here we use stimulated parametric down-conversion to study entangled states of light that bridge the gap between discrete and macroscopic optical quantum correlations. We demonstrate experimentally the onset of laser-like action for entangled photons, through the creation and amplification of the spin-1/2 and spin-1 singlet states consisting of two and four photons, respectively. This entanglement structure holds great promise in quantum information science where there is a strong demand for entangled states of increasing complexity.  相似文献   

20.
A quantum secure direct communication and authentication protocol is proposed by using single photons. An information transmission is completed by sending photons once in quantum channel, which improves the efficiency without losing the security. The protocol encodes identity-string of the receiver as single photons sequence, which acts as detection sequence and implements authentication. Before secret message is encoded as single photons sequence, it is encrypted with identity-string of the sender by using XOR operation, which defends quantum teleportation attack efficiently. The base identity-strings of the sender and the re- ceiver are reused unconditionally secure even in noisy channel. Compared with the protocol proposed by Wang et al. (Phys Lett A, 2006, 358: 256--258), the protocol in this study sends photons once in one transmission and defends most attacks including 'man-in-the-middle' attack and quantum teleportation attack efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号