首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heller RC  Marians KJ 《Nature》2006,439(7076):557-562
Unrepaired lesions in the DNA template pose a threat to accurate replication. Several pathways exist in Escherichia coli to reactivate a blocked replication fork. The process of recombination-dependent restart of broken forks is well understood, but the consequence of replication through strand-specific lesions is less well known. Here we show that replication can be restarted and leading-strand synthesis re-initiated downstream of an unrepaired block to leading-strand progression, even when the 3'-OH of the nascent leading strand is unavailable. We demonstrate that the loading by a replication restart system of a single hexamer of the replication fork helicase, DnaB, on the lagging-strand template is sufficient to coordinate priming by the DnaG primase of both the leading and lagging strands. These observations provide a mechanism for damage bypass during fork reactivation, demonstrate how daughter-strand gaps are generated opposite leading-strand lesions during the replication of ultraviolet-light-irradiated DNA, and help to explain the remarkable speed at which even a heavily damaged DNA template is replicated.  相似文献   

2.
本文采用非线性映射的方法分析伯氏疏螺旋体前导链和后随链上的基因结构,发现基因分布存在明显的差异,同义密码子的使用亦具有明显的倾向性.此外,高表达基因分布具有不对称性,其同义密码子使用与其它基因亦有不同,这表明原核生物基因组复制起始点两侧的碱基分布及翻译机制均影响基因的密码子使用.  相似文献   

3.
R McKay  D DiMaio 《Nature》1981,289(5800):810-813
  相似文献   

4.
5.
6.
7.
J Coveney  H R Woodland 《Nature》1982,298(5874):578-580
  相似文献   

8.
9.
10.
11.
12.
13.
14.
Okeoma CM  Lovsin N  Peterlin BM  Ross SR 《Nature》2007,445(7130):927-930
Genomes of all mammals encode apobec3 genes, which are thought to have a function in intrinsic cellular immunity to several viruses including human immunodeficiency virus type 1 (HIV-1). APOBEC3 (A3) proteins are packaged into virions and inhibit retroviral replication in newly infected cells, at least in part by deaminating cytidines on the negative strand DNA intermediates. However, the role of A3 in innate resistance to mouse retroviruses is not understood. Here we show that A3 functions during retroviral infection in vivo and provides partial protection to mice against infection with mouse mammary tumour virus (MMTV). Both mouse A3 and human A3G proteins interacted with the MMTV nucleocapsid in an RNA-dependent fashion and were packaged into virions. In addition, mouse A3-containing and human A3G-containing virions showed a marked decrease in titre. Last, A3(-/-) mice were more susceptible to MMTV infection, because virus spread was more rapid and extensive than in their wild-type littermates.  相似文献   

15.
16.
Iyer VR  Horak CE  Scafe CS  Botstein D  Snyder M  Brown PO 《Nature》2001,409(6819):533-538
  相似文献   

17.
Interactions between bacterial hosts and their viruses (phages) lead to reciprocal genome evolution through a dynamic co-evolutionary process. Phage-mediated transfer of host genes--often located in genome islands--has had a major impact on microbial evolution. Furthermore, phage genomes have clearly been shaped by the acquisition of genes from their hosts. Here we investigate whole-genome expression of a host and phage, the marine cyanobacterium Prochlorococcus MED4 and the T7-like cyanophage P-SSP7, during lytic infection, to gain insight into these co-evolutionary processes. Although most of the phage genome was linearly transcribed over the course of infection, four phage-encoded bacterial metabolism genes formed part of the same expression cluster, even though they are physically separated on the genome. These genes--encoding photosystem II D1 (psbA), high-light inducible protein (hli), transaldolase (talC) and ribonucleotide reductase (nrd)--are transcribed together with phage DNA replication genes and seem to make up a functional unit involved in energy and deoxynucleotide production for phage replication in resource-poor oceans. Also unique to this system was the upregulation of numerous genes in the host during infection. These may be host stress response genes and/or genes induced by the phage. Many of these host genes are located in genome islands and have homologues in cyanophage genomes. We hypothesize that phage have evolved to use upregulated host genes, leading to their stable incorporation into phage genomes and their subsequent transfer back to hosts in genome islands. Thus activation of host genes during infection may be directing the co-evolution of gene content in both host and phage genomes.  相似文献   

18.
Lee JB  Hite RK  Hamdan SM  Xie XS  Richardson CC  van Oijen AM 《Nature》2006,439(7076):621-624
A hallmark feature of DNA replication is the coordination between the continuous polymerization of nucleotides on the leading strand and the discontinuous synthesis of DNA on the lagging strand. This synchronization requires a precisely timed series of enzymatic steps that control the synthesis of an RNA primer, the recycling of the lagging-strand DNA polymerase, and the production of an Okazaki fragment. Primases synthesize RNA primers at a rate that is orders of magnitude lower than the rate of DNA synthesis by the DNA polymerases at the fork. Furthermore, the recycling of the lagging-strand DNA polymerase from a finished Okazaki fragment to a new primer is inherently slower than the rate of nucleotide polymerization. Different models have been put forward to explain how these slow enzymatic steps can take place at the lagging strand without losing coordination with the continuous and fast leading-strand synthesis. Nonetheless, a clear picture remains elusive. Here we use single-molecule techniques to study the kinetics of a multiprotein replication complex from bacteriophage T7 and to characterize the effect of primase activity on fork progression. We observe the synthesis of primers on the lagging strand to cause transient pausing of the highly processive leading-strand synthesis. In the presence of both leading- and lagging-strand synthesis, we observe the formation and release of a replication loop on the lagging strand. Before loop formation, the primase acts as a molecular brake and transiently halts progression of the replication fork. This observation suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during the slow enzymatic steps on the lagging strand.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号