首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
生物电子学     
陈维平 《世界科学》1990,12(8):14-17
  相似文献   

2.
3.
Good.  B 桑林岗 《世界科学》1991,13(8):18-19
电子学T模型又要出现,新型的电子管为集装在硅片中的不再发热的显微器件。  相似文献   

4.
5.
6.
7.
Corco  E  高梅 《世界科学》1989,11(8):39-40
两个医生正注视着显示病人心脏跳动的录像磁带。他们不能确诊这个病人为什么呼吸困难,而录相显示出一股黑色的液流从主动脉瓣喷流出来,清楚地指出在瓣膜上有一个漏洞。以磁共振成像原理而成的心脏跳动的录像,是近几年来医学新技术发明之一。此外,还有用于诊断眼部肿瘤的超声系统;基于体温变化来调节速率的心脏  相似文献   

8.
9.
量子电子学隶属物理学,它和应用技术领域的关系密切,激光是其实用性应用的基础.光电子学或电子光学随着激光的实用化进展而分化并继续发展.无疑量子电子学本身是物理学的分支,而激光光谱学则成为基础物理应用中的重要部分.以下将讨论今后激光和量子电子学的发展.  相似文献   

10.
分子电子学     
Munn  R  朱政 《世界科学》1989,11(11):1-4
由分子材料做成的电子元件,线度一般为毫微米数量级。单个分子就有可能被做成固体电路中的一个基本元件。分子材料在光电子学,数据处理及模式识别等方面曾展示了迷人的前景,以致到后来SDRC成功地创立了分子电子学这门科学。目前用在这方面的预算每年不少于一百万英镑,但是还不知道我们是否能获得分子材料的资源。  相似文献   

11.
纳米电子学   总被引:2,自引:0,他引:2  
近10年来,纳米科学与技术学(纳米学)这个科学术语及其内涵引起了世人的普遍关注,各种海阔天空的议论充满着多种报刊杂志,其来势不亚于20世纪80年代末的全球高温超导热.这种景象表明纳米学确实很重要,它有可能掀起人类认知上的新突破、技术上的新飞跃和工业上的新革命.这是一个综合性的交叉学科,它的发展和深入研究,必将对人类的生存和发展产生巨大的影响.然而,我们必须清楚,要想在这一领域达到最终的目标,使之完全实用化,还必须经历极其艰难困苦的历程,需要多代人的研究努力.虽然现代高科技飞速的发展有可能缩短这个历程,但仍存在许多根本性的问题,包括正确的哲学观、科学观、理论体系和具体的技术难题.  相似文献   

12.
13.
Salam.  Z 毕只初 《世界科学》1992,(7):34-35,20
从本世纪60年代初起人们对类脂双层进行了广泛的研究。目前,平面的双层类脂膜(缩写为BLM)与球状的类脂双层即脂质体一起在经过适当修饰后已是生物膜的最佳模型。近来,微电子学的进展和人们对包括BLM在内的超薄有机膜的兴趣已导致生物传感器的发展,从而在化学、电子学以及生物学等学科的交叉处产生了一个新的研究领域:生物分子电子学。这个激动人心的新科技领域是发展新的半导体后电子技术即其长期目标是分子计算机的分子电子学的一部分。当前的微电子学与未来的分子电子学之间的分界线为一微米。在一微米以下,经典的微电子学规律不再成立而量子力学的规律开始起作用。微电子学以半导体薄片为基础,而新型的分子电子学将以分子和原子本身的能力为基础。在分子电子学里有两个主要方向:(1)以分子和原子的性质为基础的分子电子学和(2)应用量子效应的纳电子学。人们预期这些新的领域将发展出比目前PC计算机线路要快10万倍的分子电子线路,在分子电子线路里,分子的信息加工能力将通过电子及其结构的变化来实现。在生物体里,蛋白酶的构  相似文献   

14.
蒋平 《科学》1993,45(3):48-51
  相似文献   

15.
16.
麻省波士顿──1999年11月29日~12月 3 日,将近4,400位研究者聚集于此,讨论如何加速从电子学到医学及各种未来材料发展的进程。这次会议的亮点是如何用导线把组合材料制成的分子电子元件和基因工程蛋白质串连起来的新设计。导线连接起超微世界 如果不在外空飞行,在计算机工艺中,更小通常就意味着更快和更好。一些用单分子制成的试验开关和贮存元件,对处于微型化前沿的研究者而言,要把这些元件用导线连接在一起,并使之进入研究系统,已经超出了他们的能力范围。在这次材料研究学会(MRS)会议上,科学家们谈到了…  相似文献   

17.
将硅片的处理能力与塑料的柔韧性结合起来,就可获得可以卷曲的柔性芯片。它的秘密存在于奇特的边界层:有序向无序的过渡。  相似文献   

18.
条形码的出现使得结帐更加快捷,磁卡的出现使银行业和购物发生了奇迹般的变化。但这些成就比起即将到来的下一代全塑料微处理器来说,就都黯然失色了。这种塑料微处理器价格低廉,功能强大,而且制造工艺简单。它可以使那些产品标签和一次性消费品具有一台小型计算机的数据存储和数据处理能力。这样,每天你就可以买一张扑克牌大小,并且具有交互功能的报纸了。 位于荷兰埃因霍芬的菲力浦研究实验室目前处于研发这种塑料集成电路的前沿。两年前,它们曾研制出第一块塑料集成电路板(ICs)。最近这个研究小组在《应用物理快报》上宣布,…  相似文献   

19.
纳米科学与技术   总被引:10,自引:0,他引:10  
华中一 《科学》2000,52(5):6-10
  相似文献   

20.
介观耦合电路的量子压缩效应   总被引:26,自引:0,他引:26  
李有泉 《科学通报》1996,41(14):1275-1277
随着纳米技术和纳米电子学的飞速发展,电路以及器件小型化的势头越来越强烈,近年来已达到原子尺寸的量级.显然,当电子的输运尺度达到一个特征尺度,即电子的非弹性碰撞尺度时,必须考虑其量子力学性质及电荷的非连续性质.因此,在纳米电子学中对电路及器件建立一个正确的量子理论已经是十分迫切的任务了.当然,最为简单然而又是十分重要的工作是将LC电路量子化,这一工作可以通过与经典简谐振子量子化的方法做类比而得以完成,其中谐振子的坐标相当于电路中的电荷.最近,我们提出了一个考虑电荷量子效应的介观电路量子化的方法,讨论了有耗散的介观电路的量子涨落.本文给出了无耗散介观耦合电路中各个回路的电荷、电流的量子涨落,发现这些电流与电荷的量子涨落之间存在着压缩效应对于一个经典的无耗散的并且其中一个回路中有电源ε(t),电感电容组成的电容耦合电路(电感耦合电路也可以等效成电容耦合电路).按照Kirchhoff定律,可以写出其运动方程为L_1(d~2q_1)/dt~2+q_1/C_1+q_1/C_2-q_2/C_2=ε(t),L_2(d~2q_2)/dt~2+q_2/C_2-q_1/C_2=0 (1)其中q_1(t)和q_2(t)是两个LC型电路中的电荷;L_1,C_1和L_2,C_2是两个回路中的电感和电容,C是这两个回路的耦合电容.如果ε(t)=0,可以把该运动方程写成简单的Hamilton形式  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号