首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Indonesian Throughflow in an eddy-permitting oceanic GCM   总被引:4,自引:0,他引:4  
An eddy-permitting quasi-global oceanic GCM was driven by wind stresses from reanalysis data for the period of 1958-2001 to get the time series of the upper circulation in the Indonesian Sea. The model represents a reasonable pathway of Indonesian Throughflow (ITF) with Makassar Strait making the major passage transfer the North Pacific water southward. The simulated annual mean ITF transport is 14.5 Sv, with 13.2 Sv in the upper 700 m. Annual cycle is the dominant signal for the seasonal climatology of the upper layer transport. Both the annual mean and seasonal cycle agree well with the observation. The overall correlation between the interannual anomaly of the ITF transport and Nino 3.4 index reaches -0.65 in the simulation,which indicates that ENSO-related interannual variability in the Pacific is dominant in controlling the ITF transport. The relationship between the interannual anomalies of ITF and sea surface temperature in the Pacific, the Indian Ocean is not fixed in the simulation. In 1994, for instance, the intensive Indian Ocean sea surface temperature anomaly plays a dominant role in the formation of an impressive large transport of ITF.  相似文献   

2.
The tropical Pacific-Indian Ocean temperature anomaly mode and its effect   总被引:2,自引:0,他引:2  
Temperature anomaly in the Indian Ocean is closely related to that in the Pacific Ocean because of the Walker circulation and the Indonesian throughflow. So only the El Ni?o/Southern Oscillation (ENSO) in the Pacific cannot entirely explain the influence of sea surface temperature anomaly (SSTA) on climate variation. The tropical Pacific-Indian Ocean temperature anomaly mode (PIM) is presented based on the comprehensive research on the pattern and feature of SSTA in both Indian Ocean and Pacific Ocean. The features of PIM and ENSO mode and their influences on the climate in China and the rainfall in India are further compared. For proving the observation results, numerical experiments of the global atmospheric general circulation model are conducted. The results of observation and sensitivity experiments show that presenting PIM and studying its influence are very important for short-range climate prediction.  相似文献   

3.
In this paper, the sea surface height and the heat content of the upper ocean are analyzed to retrieve the relationship of interannual variabilities between the tropical western Pacific and eastern Indian Oceans during the 1997 - 1998 El Nino event. In the prophase of this El Nino, the negative sea level anomalies (SLA) occurred in the tropical western Pacific (TWP) firstly, and then appeared in the tropical eastern Indian Ocean (TEI). The negative heat content anomalies (HCA) emerged in the TWP before this El Nino burst while the SLA signals developed over there. During the mature stage of this El Nino, two kinds of signals in the TWP and TEI turned to be the maximum negative sequently. Due to the connected interannual adjustment between the TEI and TWP, we adopted a method to estimate the Indonesian Throughflow (ITF) transport by calculating the HCA budget in the TEI. The indirect estimation of the ITF was comparable to the observation values. Therefore, the anomalies in the TEI had been proved as adv  相似文献   

4.
The interdecadal variation of Indonesian Throughflow and its mechanism   总被引:4,自引:0,他引:4  
The interdecadal variation of the volume and heat transport of Indonesian Throughflow (ITF) and its mechanism are preliminarily studied on the basis of the updated SODA data. It is found that the interdecadal variation of ITF‘s volume transport is mainly concentrated in upper 714 m and that of ITF‘s heat transport is mainly confined to upper 450 m. There is fairly consistent interdecadal variation in the depth-integrated seawater pressure above different depths in the region south of Davao, north of New Guinea and southwest of Australia. The depth-integrated pressure difference between northwest of Australia and south of Java has best correspondence with ITF‘s volume transport on interdecadal time scales. The relation between the wind stress on the Pacific and ITF‘s volume transport on interdecadal time scales is studied based on Island Rule. It is shown that both the wind stress along the zonal lines just south of Australia and the Equator act as the dominant contributors to ITF‘s volume transport, with the latter dominating the phase of ITF‘s interdecadal variation. These results indicate that the atmospheric forcing and oceanic adjustment in the tropical region both contribute significantly to the ITF‘s interdecadal variation.  相似文献   

5.
An assimilation data set based on the GFDL MOM3 model and the NODC XBT data set is used to examine the circulation in the western tropical Pacific and its seasonal variations. The assimilated and observed velocities and transports of the mean circulation agree well. Transports of the North Equatorial Current (NEC), Mindanao Current (MC), North Equatorial Countercurrent (NECC) west of 140°E and Kuroshio origin estimated with the assimilation data display the seasonal cycles, roughly strong in boreal spring and weak in autumn, with a little phase difference.The NECC transport also has a semi-annual fluctuation resuiting from the phase lag between seasonal cycles of two tropical gyres' recirculations. Strong in summer during the southeast monsoon period, the seasonal cycle of the Indonesian throughfiow (ITF) is somewhat different from those of its upstreams, the MC and New Guinea Coastal Current (NGCC), implying the monsoon's impact on it.  相似文献   

6.
SINCE THE 1990S, THE CLIMATIC VARIABILITY ON INTERDE- CADAL TIME SCALES BECAME THE FOCUS OF THE INTERNATIONAL CLIMATOLOGY RESEARCH MISSIONS[1―3]. ON TIME SCALES OF A DECADE OR MORE, THE OCEAN CIRCULATION PREDOMINATEDHEAT BALANCE AND HYDROLOGICAL CYCLE, S…  相似文献   

7.
The pathway of the interdecadal variability in the Pacific Ocean   总被引:15,自引:1,他引:14  
Cases of the interdecadal variability in the Pacific Ocean and their evolution were examined in the paper with the statistic methods (CEOF and composite analysis) over the period of 1950–1993. Observations of oceanic temperatures in the upper 400 m revealed an obvious region of the interdecadal signals in the central North Pacific. Such signals propagated southwestward, then subducted to the subtropics. The hypothesized link for interdecadal oceanic variability between the subtropics and the tropics, especially with the western tropical Pacific was unraveled in order to detect the cause of decadal signals in the tropics. The thermal anomalies subducted in the central North Pacific east to the dateline only reach 18°N. There has been no further southward propagation since then due to a certain barrier. The origin of the interdecadal signals in the western tropical Pacific was traced to the southern tropical Pacific. There is a meridional pathway around the dateline where the signals were loaded. These variabilities were in the nature of the thermocline circulation.  相似文献   

8.
Since the mid-nineteenth century the Earth's surface has warmed, and models indicate that human activities have caused part of the warming by altering the radiative balance of the atmosphere. Simple theories suggest that global warming will reduce the strength of the mean tropical atmospheric circulation. An important aspect of this tropical circulation is a large-scale zonal (east-west) overturning of air across the equatorial Pacific Ocean--driven by convection to the west and subsidence to the east--known as the Walker circulation. Here we explore changes in tropical Pacific circulation since the mid-nineteenth century using observations and a suite of global climate model experiments. Observed Indo-Pacific sea level pressure reveals a weakening of the Walker circulation. The size of this trend is consistent with theoretical predictions, is accurately reproduced by climate model simulations and, within the climate models, is largely due to anthropogenic forcing. The climate model indicates that the weakened surface winds have altered the thermal structure and circulation of the tropical Pacific Ocean. These results support model projections of further weakening of tropical atmospheric circulation during the twenty-first century.  相似文献   

9.
Using a global atmosphere-ocean coupled model with the present-day and 14 MaB.P. oceanic topography respectively, two experiments are implemented to investigate the effect of different locations of Australian Plate on the atmospheric circulation in middle-high latitudes of the Southern Hemisphere. The results show that when Australian Plate lay south at 14 MaB.P., both anticyclone circulations in the subtropical oceans and cyclone circulation around 60°-70°S are strengthened. Subtropical highs and circumpolar low pressure appear stronger, which results in much stronger Antarctic Oscillation and shorter period of Antarctic Oscillation Index (AOI) at 14 MaB.P. The rainfall and the surface air temperature also change correspondingly.The precipitation decreases around 40°S and increases around 60°- 70°S, and the surface air temperature rises in high latitudes of the South Pacific and descends over the Weddell Sea and its north side. Besides, due to the changes of the temperatures and winds, Antarctic sea ice coverage also changes with its increasing in the Ross Sea and its west regions and decreasing in the Weddell Sea.  相似文献   

10.
利用九层菱形截断15波的全球大气环流谱模式,对赤道西太平洋海表温度,北极海冰及综合异常精形在北半球夏季大气环流中的作用进行了一系列数值试验和分析。结果表明:赤道西太平洋海表温度的异常变化与北极海冰面呼焦异均可显著影响大气环流,但海冰异常对低纬大气环流的影响远小于西太平洋的海温异常的影响。对全球大气环流异常形成机制的讨论,表二维Rossby波开的传播及外强迫引起的大气内部动力学过程虽夏季大气环流异常  相似文献   

11.
年际和年代际气候变化的全球时空特征比较   总被引:18,自引:3,他引:18  
5利用1950-1998年全球海洋同化分析资料和全球大气再分析资料,分析比较了全球海气系统年际和年代际变化的主要时空特征。结果表明:1)全球上层海洋年际变化主要为位于热带太平洋的ENSO模态,年代际变化最显区域中纬度海洋、赤道外热带东太平洋和大西洋及南半球高纬度区域;2)全球大气年际和年代际变化均主要位于中高纬地区尤其是两极地区,在年际时间尺度上,气温异常和气压异常没有明显的对应关系,但在年代际时间尺度上,气温增暖(变冷)常常伴随着气压的降低(升高);3)在年际时间尺度上,发生在中高纬度陆地地区的大气年际变化和主要发生在热带海洋的上层海洋年际变化没有一致性的内在联系,前主要表现为大气内部(浑沌)变化,而后主要为热带海气相互作用产生的ENSO变化;4)在年代际时间尺度上,全球海洋大气系统大约在20世纪70年代均一致性地经历了一次跃变,其结果导致80年代以来,全球大范围地区(尤其是两极和西伯利亚地区)气温明显偏暖,赤道两侧的热带东太平洋、北美和南美西海岸及非洲西海岸等海域海表温度偏高,伴随着这种全球大范围背景增暖现象,青藏高原北部地区和格陵兰岛气温具有变冷趋势,而中纬度北太平洋和南半球高纬度海域海表温度也表现为降低。  相似文献   

12.
利用气候系统模式(CESM1.0)研究陆地地形改变对大气?海洋经圈环流的影响。模式首先给出真实海陆分布及陆地地形情况下的大气?海洋气候态, 然后给出平板陆地情况下(陆地海拔均匀10 m)的气候态。与真实世界相比, 平板陆地情形下大气?海洋经圈环流发生重大改变: 首先, 年平均大气对流中心南移到赤道附近, 使得大气哈德雷环流相对于赤道对称; 其次, 海洋的经向翻转流变强, 大西洋经向翻转流完全消失, 取而代之的是在太平洋出现强大的经向翻转流及热盐环流。在平板陆地情形下, 北半球中高纬度大气抬升减弱, 向北的大气热量输送减少, 北半球温度降低, 大气对流中心因而向赤道迁移; 同时, 海洋向极地的热量输送也减弱, 中高纬度海洋变冷, 北太平洋海水密度增加很多, 北大西洋海水密度降低, 导致海洋经向翻转流从大西洋转移到太平洋。  相似文献   

13.
In this study,a quasi-global(excluding the Arctic Ocean) eddy-resolving ocean general circulation model(OGCM) is established based on the latest version of the LASG/IAP Climate system Ocean Model(LICOM2.0).The horizontal resolution and vertical resolution are increased to 1/10° and 55 layers,respectively.Forced by the surface fluxes from the reanalysis and observed data,the model has been integrated for approximately 20 model years(20 a).During the last 8 a,the model is driven by daily mean wind stresses from QuikSCAT and heat fluxes from reanalysis data from 2000 to 2007.The basic performance of the OGCM is analyzed using the last 8 a simulation output.Compared with the simulation of the coarse-resolution OGCM,the eddy-resolving OGCM not only better simulates the spatial-temporal features of mesoscale eddies and the paths and positions of western boundary currents but also reproduces the large meander of the Kuroshio Current and its interannual variability.Another aspect,namely,the complex structures of equatorial Pacific currents and currents in the coastal ocean of China,are better captured due to the increased horizontal and vertical resolution.  相似文献   

14.
The Indonesian Archipelago provides important heat transport pathways of the Western Pacific Warm Pool between the northern Indian Ocean and western equatorial Pacific Ocean, that exert important impacts on global climate change. This study investigated AMS 14C, δ18O, planktonic foraminifer assemblages and sedimentation rates in three piston cores collected in the Indonesian Archipelago. The results indicate that changes in the Indonesian Archipelago heat transport pathways were phase characteristic and in steps during the last deglaciation. In the deglaciation Termination IA, at about 12.5 kaBP, sea level rose rapidly in a short time period, and Makassar and Lombok straits widened suddenly for warm and fresh water from the Pacific to pour into the Java Sea and eastern Indian Ocean. During the Termination IB, about 9.5 kaBP, sea level rose rapidly again, and the South China Sea (SCS) started to connect with the Java Sea. With monsoon actions, a large amount of fresh water from the SCS shelf area flew through the Indonesian Archipelago.  相似文献   

15.
利用美国地球流体实验室的Modular Ocean Model(MOM4)模式构建了一组全球实际大洋环流实验,以检验海洋环流形势及温度结构对海洋垂直混合系数的敏感性,并仔细分析了各实验中温度方程中各项的变化,讨论了垂直混合系数改变对海洋环流形势影响的物理机制。实验结果表明,海洋垂直混合系数对海温的空间分布和海洋流场结构都有很大影响,这种影响在赤道温跃层附近表现得最为明显。这说明大洋环流对垂直混合强度的变化是相当敏感的。一般来说,在混合系数取值大的实验中大洋中上层温度的垂直和水平梯度都较小,相应的南北赤道流强度较强,赤道潜流和南北赤道逆流强度较弱,在混合系数取值小的实验中大洋中上层的温度梯度较大,此时南北赤道流强度较弱,赤道潜流和南北赤道逆流强度较强,赤道流系的各分支在范围上也有相应变化。  相似文献   

16.
海洋垂直混合系数对大洋环流影响的敏感性研究   总被引:1,自引:0,他引:1  
利用美国地球流体实验室的Modular Ocean Model(MOM4)模式构建了一组全球实际大洋环流实验,以检验海洋环流形势及温度结构对海洋垂直混合系数的敏感性,并仔细分析了各实验中温度方程中各项的变化,讨论了垂直混合系数改变对海洋环流形势影响的物理机制。实验结果表明,海洋垂直混合系数对海温的空间分布和海洋流场结构都有很大影响,这种影响在赤道温跃层附近表现得最为明显。这说明大洋环流对垂直混合强度的变化是相当敏感的。一般来说,在混合系数取值大的实验中大洋中上层温度的垂直和水平梯度都较小,相应的南北赤道流强度较强,赤道潜流和南北赤道逆流强度较弱,在混合系数取值小的实验中大洋中上层的温度梯度较大,此时南北赤道流强度较弱,赤道潜流和南北赤道逆流强度较强,赤道流系的各分支在范围上也有相应变化。  相似文献   

17.
Slowdown of the meridional overturning circulation in the upper Pacific Ocean   总被引:44,自引:0,他引:44  
McPhaden MJ  Zhang D 《Nature》2002,415(6872):603-608
Decadal temperature fluctuations in the Pacific Ocean have a significant effect on marine ecosystems and the climate of North America. The physical mechanisms responsible for these fluctuations are poorly understood. Some theories ascribe a central role to the wind-driven meridional overturning circulation between the tropical and subtropical oceans. Here we show, from observations over the past 50 years, that this overturning circulation has been slowing down since the 1970s, causing a decrease in upwelling of about 25% in an equatorial strip between 9 degrees N and 9 degrees S. This reduction in equatorial upwelling of relatively cool water, from 47 x 10(6) to 35 x 10(6) m3 s(-1), is associated with a rise in equatorial sea surface temperatures of about 0.8 degrees C. Another effect of the slowing circulation is a reduction in the outgassing of CO2 from the equatorial Pacific Ocean-at present the largest oceanic source of carbon dioxide to the atmosphere.  相似文献   

18.
利用一个完全耦合的海气模式, 通过对比分析两组试验中海表温度、盐度、风应力等气候态变化特征以及ENSO强度和频率的变化, 研究热带太平洋气候平均态及年际变率对热盐环流减弱的响应。在北大西洋高纬地区注入1 Sv淡水后, 大西洋经向翻转流(AMOC)减弱约90%, 这直接导致向北的经向热量输送减少, 使北大西洋有明显降温, 南大西洋略有升温。这些变化会经过大气和海洋的远程传播以及局地海气反馈作用, 影响热带太平洋气候平均态: 赤道东西太平洋的SST都略有增温, 但纬向温度梯度和纬向风应力并没有太大变化, 赤道太平洋温跃层的深度和倾斜度也基本保持不变。相应地, ENSO强度和频率也没有明显变化。由此得出结论: 热盐环流减弱会引起全球气候平均态的变化, 但对热带太平洋的年际变率没有太大影响。  相似文献   

19.
 应用谱分析的方法,讨论了东南亚降水分别与热带印度洋和太平洋海温的关系.得出热带印度洋和太平洋海温变化对东南亚降水影响的最佳落后时间长度.同时找出了上述2片海域对东南亚降水影响的几个关键区,它可以作为东南亚旱涝预报的强信号因子.  相似文献   

20.
Thomas DJ 《Nature》2004,430(6995):65-68
The deep-ocean circulation is responsible for a significant component of global heat transport. In the present mode of circulation, deep waters form in the North Atlantic and Southern oceans where surface water becomes sufficiently cold and dense to sink. Polar temperatures during the warmest climatic interval of the Cenozoic era (approximately 65 to 40 million years (Myr) ago) were significantly warmer than today, and this may have been a consequence of enhanced oceanic heat transport. However, understanding the relationship between deep-ocean circulation and ancient climate is complicated by differences in oceanic gateways, which affect where deep waters form and how they circulate. Here I report records of neodymium isotopes from two cores in the Pacific Ocean that indicate a shift in deep-water production from the Southern Ocean to the North Pacific approximately 65 Myr ago. The source of deep waters reverted back to the Southern Ocean 40 Myr ago. The relative timing of changes in the neodymium and oxygen isotope records indicates that changes in Cenozoic deep-water circulation patterns were the consequence, not the cause, of extreme Cenozoic warmth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号