首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
超细晶粒Q235钢板力学性能和强韧化机理研究   总被引:2,自引:0,他引:2  
通过添加合金元素Nb和Ti及配以合理的控轧控冷工艺,得到了强韧性配合良好的超细晶粒Q235钢板。在对钢的力学性能测试和显微组织观察的基础上,研究了超细晶粒钢组织结构与性能之间的关系。结果表明,超细晶粒Q235钢的组织为铁素体加珠光体;但其性能较传统Q235钢翻了一番;强度改善是控轧控冷工艺和加入微合金化元素Nb和Ti综合作用的结果。超细晶粒Q235钢板的强韧化机制主要是细晶强化,其次为沉淀强化。  相似文献   

2.
以含Nb微合金化试验钢为研究对象,通过3个不同精轧温度区间的轧制+层流冷却、空冷、超快冷的TMCP工艺获得了含有铁素体、贝氏体、马氏体以及少量残余奥氏体的显微组织.分析了控轧温度区间对含Nb微合金化试验钢显微组织和力学性能的影响.结果表明,在控冷工艺参数相近的情况下,随着精轧开轧温度和终轧温度的降低,试验钢的抗拉强度减小,屈服强度、延伸率和强塑积增大.其中采用850~800℃的温度区间精轧+层流冷却、空冷、超快冷的TMCP工艺时,试验钢的屈服强度、延伸率和强塑积分别达到了513MPa,35%和25235MPa.%的最大值.  相似文献   

3.
桥梁用钢14MnNbq焊接接头的疲劳设计曲线   总被引:2,自引:0,他引:2  
通过对14MnNbq钢焊接接头的疲劳试验,得到了循环应力-应变方程、应变寿命曲线以及疲劳设计曲线,并将14MnNbq钢焊接接头疲劳设计曲线与ASME、BS5500中相应的曲线进行了比较。  相似文献   

4.
400 MPa级超级钢的脆性转变温度   总被引:2,自引:0,他引:2  
以微Nb处理控轧控冷工艺生产的400MPa级超级钢为研究对象,采用"系列冲击实验法"测定系列冲击功,绘制出脆性转变温度曲线·按综合能量法及断口形貌,确定出脆性转变温度为-80℃,并与相同化学成分、普通方法生产的钢板的脆性转变温度加以比较,对这一温度降低的原因进行了分析·分析结果认为,脆性转变温度降低、低温韧性的改善是化学成分、微观组织、轧制工艺综合作用的结果·钢中S、P、Si含量低有利于脆性转变温度的降低、微量Nb的存在有利于脆性转变温度的降低;晶粒细化,亚晶强化是试验钢脆性转变温度降低的组织原因;控轧控冷工艺的采用是降低脆性转变温度的工艺因素·  相似文献   

5.
在Gleeble-1500热应力/应变模拟实验机上热压缩模拟Q460C含铌钢的轧制过程,并控制终轧温度和轧后冷却速度.通过观察金相组织和膨胀曲线研究控轧控冷对Q460C钢组织和相变的影响,分析了轧制过程中可能诱导其裂纹产生的原因.结果表明,Q460C钢组织分布不均、控轧控冷工艺不合理均可能造成其裂纹的产生,提高终轧温度可促进相变提前发生,而在较高终轧温度下,轧后冷却速度对Q460C钢组织变化的影响很小.  相似文献   

6.
青藏铁路钢-混凝土组合结构低温试验研究   总被引:1,自引:0,他引:1  
针对钢-混凝土结合梁在青藏铁路上的应用,模拟青藏线的温度环境,用专门研制的低温设备(最低温度能保持在-50 ℃以下),对由14MnNbq钢构件、φ22栓钉和C50混凝土组成的钢-混凝土组合件作了低温疲劳试验.试验中,考虑了钢板的轧向和环境温度变化等因素的影响,研究了低温下φ22栓钉的破坏形式和疲劳承载力等问题,并将低温下的试验结果同常温下的试验结果进行了对比.研究表明:同等荷载下,φ22栓钉在-50 ℃~0 ℃的低温环境下疲劳寿命比室温下长,且有温度越低,疲劳性能越好的趋势;钢板轧向对栓钉疲劳寿命影响很大;14MnNbq钢材质优良,转变温度低于-50 ℃,-50 ℃下,栓钉焊在14MnNbq钢板上对钢板材质无影响.采用FZS型温度数据自动测试系统,模拟青藏线昼夜降温、升温过程,对钢与混凝土的温差做了测试.根据测试结果,青藏铁路结合梁设计中钢与混凝土温差可按15 ℃取值.图6,表1,参16.  相似文献   

7.
对含有不同碳、锰、硅的16Mn钢进行了控轧控冷实验,测定了各项力学性能,对其主要组织参量铁素体晶粒平均直径(d_F)及珠光体百分数(Pe%)进行了定量金相分析,进行了各项力学性能对16Mn钢中各元素含量和二主要组织参量的多元线性逐步回归分析,获得控轧控冷16Mn钢各项力学性能与钢的化学成分和组织参量之间定量关系的数字表达式。根据数学表达式所提供的信息,参照二组织参量对钢的化学成分和控轧控冷工艺参数的多元线性回归方程,探讨了控轧控冷16Mn钢的强韧化机制。  相似文献   

8.
以新型含铌高强细晶IF钢为研究对象,在实验室进行了冷轧以及轧后模拟连续退火实验. 结果表明,选择合适的退火时间,晶粒变得细小、均匀,同时存在一定量的饼形晶粒. 由于添加Si、Mn等固溶强化元素,增加了钢的固溶强化作用;而合金元素Nb的添加,在组织中形成了细小的碳氮化物Nb(C,N),这些碳氮化物弥散分布,通过细晶强化和沉淀析出强化增加了钢的抗拉强度,因而高强细晶IF钢的强化机制为固溶强化、细晶强化和沉淀析出强化. 更值得注意的是,由于存在PFZ带(无析出物区)而使实验钢呈现高强度低屈服现象. 与传统的IF钢相比,含铌高强细晶IF钢不仅具有细小的晶粒,而且具有低的屈服强度、较高的r值等良好的成型性能.  相似文献   

9.
通过拉伸和金相实验分析研究了控轧控冷工艺对酒钢X65管线钢的力学性能和显微组织的影响.结果表明:在一定范围内控制开轧和终轧温度,变形过程中提高强制冷却速度,降低终冷温度,可以明显提高X65钢的力学性能.得到较多均匀的针状铁素体组织.  相似文献   

10.
厚规格汽车轮辐用钢的焊接性能   总被引:1,自引:0,他引:1  
为了研究含Nb微合金控轧控冷厚规格汽车轮辐用钢的焊后组织、性能、冷裂纹敏感性及微合金元素对焊接性能的影响,采用理论计算评定试验钢的冷裂敏感性和淬硬倾向;利用直流氩弧工艺,模拟车轮厂焊接工艺参数,对钢板进行焊接.利用光学显微镜和电子显微镜研究试验钢板焊后接头的微观组织结构;并对接头的力学性能进行研究.试验结果表明,厚规格汽车轮辐钢的热影响区(HAZ)冷裂倾向小;微合金元素Nb的加入提高了焊接热影响区性能;焊接后各部位组织、性能未发生明显改变.可得出结论:厚规格汽车轮辐钢的焊接性能较好.  相似文献   

11.
在Φ450轧机上对含Nb船板钢进行阶梯轧制,研究不同变形温度和变形量下高温奥氏体再结晶行为,绘制出奥氏体形变再结晶区域图,根据再结晶区域图进行热轧实验,通过两种不同的控轧工艺实验对比,寻求力学性能稳定的含Nb船板钢控轧工艺。结果表明,变形温度为1000℃,20%的变形量可发生奥氏体再结晶;变形温度为900℃,低于30%的变形量不发生奥氏体再结晶,变形量增大至40%~50%,发生部分奥氏体再结晶;变形温度为850℃,50%的变形量也不发生奥氏体再结晶。终轧温度提高至910℃,利用超快速冷却技术,合理控制精轧阶段的变形量,可使含Nb船板钢获得与低温终轧条件相当的力学性能。  相似文献   

12.
含Nb—V高强度钢强韧化机理研究   总被引:2,自引:0,他引:2  
利用透射电镜、X射线和化学相分析等方法研究了含Nb-V微合金钢不同控轧控冷工艺下组织与性能的变化,结果表明,其良好的综合性能主要归因于细化铁素体晶粒产生的细晶强化和细小弥散沉淀出的Nb(CN)和V(CN)质点的沉淀强化作用。  相似文献   

13.
800 MPa级双相组织低屈强比钢厚板研究   总被引:1,自引:0,他引:1  
对基本成分为Fe-0.1C-Mo的微合金HSLA钢进行了变化轧制与冷却参数的试验,分析了钢的组织形貌及微观结构;研究了变形和冷却参数与钢的屈强比、缺口冲击功、延伸率等的关系.结果表明:通过对轧制、冷却工艺的组合与变化,实现对钢的强度、塑性、屈强比的控制;抗拉强度800 MPa级的厚钢板,其屈强比控制在0.75以下,低温冲击韧性良好.钢的组织主要由针状铁素体和马氏体两相组成.  相似文献   

14.
在Gleeble 2000热模拟实验机及D450实验轧机上进行不同参数的单道次压缩及多道次淬火实验.研究表明,对铌钒钛高强钢,微合金元素铌、钒、钛的碳氮化物能有效抑制奥氏体的高温软化行为,经过6道次变形的奥氏体晶粒细化到8μm左右,其控轧工艺为未再结晶区的控制轧制.对含钛高强钢,微合金元素钛表现出相对较弱的抑制奥氏体再结晶效果,经过6道次变形后的奥氏体晶粒细化到11μm左右,其控轧工艺为再结晶区控制轧制.  相似文献   

15.
研究了轧后冷却制度对V-Ti微合金钢性能影响。通过提高轧后冷却速度及终冷温度,以控制V(CN)析出行为,从而改善钢的性能。  相似文献   

16.
通过层流冷却及卷取过程模拟实验和实验室热轧实验研究了冷却工艺参数对Ti微合金化汽车大梁钢510L组织性能的影响规律,并在生产现场进行了工业试制.结果表明,大冷速有利于弥散细小的TiC粒子析出,冷速和终冷温度对实验钢强度的影响是细晶强化、析出强化和相变强化共同作用的结果,N含量显著影响Ti的析出强化效果,在冶炼时应严格控制钢中的N含量,否则将对钢板的性能产生较大的影响.实现了低成本Ti微合金化汽车大梁钢510L的批量稳定生产.  相似文献   

17.
对780MPa级工程机械用钢进行了现场批量生产试制,对其组织与性能进行了研究.通过合理的成分设计,采用控制轧制和超快冷+层流冷却的两阶段冷却路径控制,获得了良好的组织与性能.结果表明:终轧后采用超快冷+层流冷却工艺,超快冷的出口温度在650℃,卷取温度在570℃,试验钢的屈服强度大于685 MPa,抗拉强度大于785 MPa,并具有良好的冲击性能、成形性能及焊接性能.试验钢的组织为铁素体+少量珠光体,同时,在铁素体的基体上,存在大量10nm左右的弥散析出或相间析出(Nb,Ti)(C,N),有效提高了试验钢的强度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号