首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
炉顶煤气循环—氧气鼓风高炉综合数学模型   总被引:3,自引:0,他引:3  
为了研究开发炉顶煤气循环μ氧气鼓风高炉炼铁新工艺,建立其综合数学模型.模型由高炉各个区域煤气成分计算方程、高炉上部空区热平衡模型、热化学平衡模型和炉身效率模型组成.用此模型计算了该炼铁工艺的基本工艺参数.结果表明:新工艺的焦比为200 kg.t-1,煤比为200 kg.t-1,相比传统高炉,燃料比降低22.9%;风口循环煤气量对风口理论燃烧温度影响较大,风口循环煤气量每增加10m3.t-1时,风口理论燃烧温度降低17.6K.此外,应用此模型还可以计算任何原料和燃料等条件下的炼铁工艺参数,研究相同原料和燃料条件下的各个工艺参数的变化规律.  相似文献   

2.
炉顶煤气循环-氧气鼓风高炉炼铁新技术的工艺特点决定了煤粉在其回旋区内的燃烧条件与传统高炉相比将发生很大变化.本文建立了氧气高炉直吹管—风口—回旋区下部煤粉流动和燃烧的数学模型,研究了入口布置方式、氧含量、循环煤气温度以及H2 O和CO2含量对煤粉燃烧的影响.模拟结果表明:三种引入方式中,假想的循环煤气和氧气混合进入方式明显优于循环煤气和氧气单独进入方式.当氧的体积分数由80%增加到90%,相应的煤粉燃尽率由87.525%提高到93.402%.循环煤气温度对煤粉燃尽率的影响并不显著.循环煤气中H2 O和CO2的体积分数提高5%,风口轴线上气体的最高温度分别降低124 K和113 K.  相似文献   

3.
SiO2还原对高炉风口前理论燃烧温度的影响   总被引:1,自引:0,他引:1  
风口前理论燃烧温度是衡量炉缸热状态的重要参数之一,而SiO2在风口前被碳还原对其产生的影响一直被忽略.通过实验研究了高炉风口前不同位置的试样,得到进入风口回旋区焦炭的温度和不同位置试样渣中SiO2的含量,从而确定出在风口回旋区SiO2的还原率,并建立了考虑SiO2还原情况下理论燃烧温度的计算公式,最后在富氧喷煤的条件下,分析和讨论了煤粉中灰分变化对理论燃烧温度的影响因素.  相似文献   

4.
高炉喷吹焦炉煤气风口回旋区的数学模拟   总被引:1,自引:0,他引:1  
基于质量平衡和热量平衡理论,建立了高炉喷吹焦炉煤气风口回旋区数学模型,系统研究了焦炉煤气喷吹量对回旋区焦炭质量流量、理论燃烧温度、炉腹煤气量、炉腹煤气组成和回旋区形状的影响.研究表明:在维持高炉现有的基准操作不变的条件下,随着焦炉煤气喷吹量的增加,理论燃烧温度呈降低的趋势,而炉腹煤气量呈增加的趋势;为了维持理论燃烧温度和炉腹煤气量与基准操作一致,可通过降低风量和提高富氧率进行热补偿.热补偿后,随着焦炉煤气喷吹量的增加,焦炭质量流量呈上升趋势,炉腹煤气中还原气体积呈增加趋势,回旋区体积呈缩小趋势.每增加1 m3/s的焦炉煤气喷吹量,焦炭质量流量上升1.74%,炉腹煤气中还原气体积增加2.04%,...  相似文献   

5.
高炉处理烧结烟气脱硫脱硝理论分析   总被引:1,自引:0,他引:1  
对利用高炉处理烧结烟气同时脱硫脱硝脱二噁英技术的可行性进行了理论探讨,分析高炉内部还原二氧化硫和氮氧化物,以及分解二噁英的热力学条件,探讨烧结烟气代替空气鼓风对理论燃烧温度、风量、炉缸煤气、炉顶煤气和铁水硫含量的影响.结果表明:二氧化硫、一氧化氮和二氧化氮的最低平衡体积分数分别为1.84×10-13%、3.08×10-11%和3.72×10-21%,高炉内部还原二氧化硫和氮氧化物是可行的;高炉具有分解二噁英的有利热力学条件;烟气中二氧化硫和一氧化碳对理论燃烧温度的影响可忽略,氮氧化物能略微提高理论燃烧温度,二氧化碳体积分数增加1%,理论燃烧温度降低大约40.5℃,但通过降低鼓风湿度和提高富氧率等措施,能达到高炉正常生产时的炉缸热状态水平;随着烟气中二氧化碳含量的增加,风量、炉缸和炉顶煤气量都逐渐降低,炉缸煤气一氧化碳和氢气含量增加,炉顶煤气中一氧化碳、氢气、二氧化碳和水含量都增加,氮气含量显著降低;铁水硫含量与烟气二氧化硫含量成正比,但当二氧化硫质量浓度达到2000 mg·m-3,铁水中硫质量分数仅为0.025%,铁水质量仍合格.通过综合调节高炉操作参数,也可以实现烧结烟气代替空气鼓风进行高炉炼铁生产,达到脱硫脱硝脱二恶英的目的.  相似文献   

6.
阐述了煤炭地下气化的原理,根据气化煤层的温度、主要化学反应及煤气成份的不同,将气化过程沿气通道划分为3个带,即氧化带、还原带和干馏干燥带。分析了“三带”的物理化学特征,并讨论了主要变量--温度、水涌入速率、鼓风的量与质、煤层厚度、操作压力以及气化通道的长度和断面对煤气质量的影响及各变量之间的相互关系。为进一步探讨煤炭地下气化过程和影响因素、预测产品煤气的组成、选择最佳控制参数以及确定适宜的气化工艺,提供了必要的依据。  相似文献   

7.
基于Fluent软件,采用预混燃烧模型对高炉风口回旋区内温度场进行模拟,分析风量、风压、喷煤量等参数对高炉风口回旋区内温度分布的影响。结果表明,随着风量、风压、喷煤量的增加,风口回旋区内温度最高处离风口端部的距离逐渐增大,风口回旋区内最高温度逐渐降低;风口的堵塞会使风口回旋区内温度最高处与风口端部的距离缩短,使风口回旋区内最高温度升高。  相似文献   

8.
综合考虑力学因素和高炉中燃烧反应对风口回旋区的影响,提出了描述高炉风口回旋区形成和变化规律的静态和动态模型.模拟结果表明,静态模型能准确地预测高炉回旋区的深度,动态模型可以描述鼓风速度改变时回旋区深度随时间的动态变化过程.最后得出了高炉回旋区形成和变化的规律:鼓风推力使料层迅速移动,导致回旋区大小迅速变化,形成回旋区"雏形",燃烧反应修复回旋区的大小和形状,维持回旋区的稳定.在整个回旋区变化过程中,摩擦力对于维持回旋区的稳定起着重要作用.模型预测结果与高炉风口回旋区的实测值以及其他研究者的实验结果是符合的.  相似文献   

9.
结合风口回旋区燃烧和炉外煤气预热、脱除和循环的平衡关系,建立了氧气高炉一维气固换热与反应动力学模型,并采用传统高炉的运行和解剖数据对模型进行了验证分析.通过模型研究了氧气含量和上部循环煤气流量对氧气高炉炉内过程变量的影响规律.结果表明:氧气含量偏低和上部循环煤气流量不足时,会降低铁矿石还原效果,炉渣内出现大量未还原铁氧化物;氧气含量和上部循环煤气流量的提高可以有效提高炉内CO含量和铁矿石还原速度,但提高上部循环煤气流量会大幅提升炉顶煤气温度,增大热量损失.与传统高炉相比,氧气高炉内CO含量提高1.0~1.5倍,炉内气体还原性更强;铁矿石还原完成位置提高1.49 m,全炉还原反应速度更快;直接还原度降低55.2%~79.2%,炉内直接还原反应消耗的碳量更少.  相似文献   

10.
建立了高炉风口风量分配数学模型,并提出风口流阻的计算公式.在总风量不变的条件下,计算了某5 500 m3高炉风口长度或者风口面积调整时,各风口风量、风速和鼓风动能的变化.结果表明增加风口长度或减小风口面积都将导致对应风口流阻增加.增加部分风口的长度,已调整的风口的风量、风速和鼓风动能降低.缩小部分风口面积,已调整的风口的风量降低;当缩小多个风口面积时,已调整的风口的风速、鼓风动能才能提高,并提出了其临界风口个数的计算公式.根据该数学模型,有利于掌握风口鼓风参数的变化规律,定量化调整风口的相关参数,维持高炉的稳定和顺行.  相似文献   

11.
用数学模型进行高炉富氧鼓风作业的研究日本钢铁协会及住友金属工业公司利用一维数学模型,对高炉(3680m3)的低燃耗和富氧鼓风条件下实现高生产率进行可能性的研究。确定了燃料消耗最低的鼓风、最佳含氧量及风口处燃料的理论燃烧温度。如采用富氧鼓风而喷煤量又能...  相似文献   

12.
以重钢5号高炉实际尺寸和操作参数为基础,假设高炉风口未喷吹煤粉,回旋区内的流动为气固两相流动,且气相的流动属于粘性不可压缩流动,根据相似理论建立了高炉回旋区三维冷态实验模型,分析回旋区的形成机理及影响因素。结果表明:鼓风量、料层物理属性、料层高度以及风口直径对回旋区大小和形状均有影响。随着鼓风量的增大,回旋区穿透深度和高度均不同程度的增加,当鼓风量过大时,回旋区顶部炉料上浮,椭球形的回旋区形状不再存在。同一鼓风量下料层的粒径与密度比越大时形成的回旋区穿透深度越小,反之越大。料层高度对回旋区穿透深度的影响不大。风口直径对回旋区穿透深度的影响较明显。  相似文献   

13.
在高炉生产过程中,只有从风口窥视孔可以直接观察高炉内的情况,操作者十分关注高炉风口区的工作状况,并将其作为判断和控制高炉操作的重要依据之一.风口前的监测可以获得喷煤高炉在风口处煤粉输送情况,还可以根据风口亮度与煤粉燃烧数值模拟结合,研判煤粉在风口回旋区的燃烧状况及温度分布等.简述了国内外在高炉风口回旋区温度检测、工作状态的监控技术的研究现状,提出利用数字图像处理技术与数值模拟结合,解决高炉风口回旋区工作状况监测和控制的思考.  相似文献   

14.
本文根据风口前风量平衡方程和焦炭带入的碳量平衡方程,推导出高炉产量计算公式,求出该公式对影响产量的各个因素的偏导数,用以分析焦比对高炉产量的影响,并结合节焦分别计算和分析了煤比、油比、风量、富氧率、直接还原度等各因素对高炉产量的影响,最后以富氧鼓风为例,综合计算和分析了各种因素对高炉产量的影响。  相似文献   

15.
为实现燃煤链条锅炉的优化燃烧 ,针对锅炉燃烧过程的特点 ,提出一种以三层Fuzzy控制环作为提高锅炉燃烧热效率的控制方案 .目的是以炉膛温度为主调参数 ,排烟温度为副调参数寻找鼓风量和进煤量的最佳配比来间接控制燃烧热效率 .采用了变步长自寻优Fuzzy控制和控制规则在线自调整等手段 ,提高控制性能 .实践证明有良好的控制效果  相似文献   

16.
本文模仿高炉风口前燃烧条件,用试验与计算方法,对喷吹煤粉燃烧速度进行研究,按假设条件建立了喷吹煤粉燃烧速度的数学模型,试验与计算结果基本接近,按高炉风口燃烧特性,将模型作了修正,得出了适合高炉喷吹条件下煤粉燃烧速度变化规律的数学模型,在均匀稳定喷吹情况下,高炉适宜的喷煤量应为140—160kg/吨铁。  相似文献   

17.
对高炉风口前理论燃烧温度进行了修正,建立了基于燃料(焦炭和煤粉)发热量的计算模型,即把燃料的不完全燃烧所放出的热量转化为燃料完全燃烧所放出的热量与燃料不完全燃烧的热损失之差。最后分析了煤种、煤比、富氧率等因素对理论燃烧温度的影响。  相似文献   

18.
氧气高炉通过向风口回旋区喷吹煤粉以及脱除CO_2的循环高炉煤气,可有效降低CO_2排放。运用CFD商业软件,建立风口回旋区三维模型,针对氧气高炉所设计的新型燃烧器中氧煤枪数量及其与直吹管所呈角度和空间物理位置对风口回旋区流场的影响进行数值模拟。研究结果表明:采用单支氧煤枪操作,当其位于直吹管上部时,煤气流速度随喷吹角度由7°~15°变化时逐渐减小,且夹角为9°较为适宜,当其位于下部时,随着夹角越大,对风口回旋区深度增加越有利;采用双氧煤枪操作,当其在直吹管上下、左右分布时,夹角分别为11°和13°较合理;当单支氧煤枪位于直吹管上方且夹角为9°、距离d为75 mm时能较好地促进风口回旋区深度增加并保持足够的鼓风动能。  相似文献   

19.
从中国两座高炉风口回旋区取出煤粉样研究表明:当喷煤量达到140kg/t.HM(占燃料总量的27%)时,虽然煤早在直吹管内就开始了挥发和燃烧,但煤在回旋区内并不能完全燃烧。不过这一不完全燃烧还不破坏高炉的顺行。 用两种方法在实验室内进行了粉煤燃烧动力学研究,一种是用电阻丝加热鼓风,另一种则用等离子火炬。发现煤的燃烧率在40~80μm范围内几乎和煤的粒度大小成反比,它随着风温的提高而提高,直到1475℃;富氧到40%仍很有效。当空气过剩系数降到1.2~1.3以下则煤的燃烧率突然下降。当鼓风旋转时燃烧加快。 滴落区内,炉渣和煤灰或未燃尽的半焦的混合并不是提高喷煤量的控制因素。喷煤枪位置、角度和形状影响气固两相分布的研究表明:这些因素对喷入煤粒在助燃空气流中的均匀分布有显著影响,这一研究是采用激波管和纹影法完成的。  相似文献   

20.
针对高炉富氧喷吹煤气的新工艺,进行了热平衡和物料平衡计算.通过分析研究得到:当富氧率为10%,喷吹600m3tFe时,与唐钢1#高炉相比,新工艺的焦比可降低约40%左右.同时炉内还原气氛强、冶炼强度高、能耗少、炉顶煤气热值高,风口理论燃烧温度可进行灵活的调节,高炉上下部热量可达到均衡的分配等特点,彻底消除了喷吹煤粉给高炉冶炼带来的负面影响.高炉富氧喷吹煤气具有十分诱人的开发应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号