首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 100 毫秒
1.
针对商用车转向时转向盘力矩随转向盘转角及转向盘转速不断变化所造成的驾驶员疲劳问题,在应用动态转向系统的基础上提出转向盘力矩恒定控制方法。由转向盘转角和转速信息结合模糊算法计算助力电机补偿助力矩,并将该补偿助力矩与主助力矩相加共同控制助力电机产生助力。基于AMESim、Simulink与TruckSim进行联合仿真研究,以所建仿真模型为基础,通过仿真实验分析,结果表明所设计的动态转向系统控制方法实现了手力矩的恒定控制,改善了驾驶员转向时的手感,有助于减轻驾驶疲劳。  相似文献   

2.
基于履带车辆接地压力分布复杂,模型计算精度不够准确等问题,考虑履带车辆的滑移和滑转,以及离心力作用,分析集中载荷接地压力分布特点并建立剪切模型。分析不同转向速度和不同相对转向半径下履带车辆稳态转向过程各性能参数变化趋势。最后将转向试验数据与计算结果进行对比验证。  相似文献   

3.
为了提高车辆操纵稳定性,本文集成独立转向和主动脉冲转向提出了一种主动后轮独立脉冲转向(ARIPS)控制策略,并对此进行理论分析和试验研究.通过建立ARIPS系统仿真动力学模型,研究此系统的运行对悬架性能的影响并分析不同转向脉冲控制参数对车辆稳定性的影响.依据仿真分析和频率分析方法确定最优脉冲参数.设计ARIPS控制器及脉冲转角分配模块,基于CarSim和Simulink进行联合仿真分析,验证ARIPS的控制性能.研制并安装主动脉冲转向系统,基于试验Lexus车辆进行整车试验研究,验证ARIPS系统的实用性.仿真和试验结果表明:验证了ARIPS系统的可行性和经济性,ARIPS控制能有效提高车辆的操纵稳定性,比主动后轮转向(ARS)和主动后轮脉冲转向(ARPS)具有更好的控制效果,对改进四轮转向(4WS)系统的性能提供了一个新的研究方向和试验基础.  相似文献   

4.
为提高遥控履带车辆的操纵稳定性,研究了转向控制系统的控制方法.遥控履带车辆的转向控制由转向控制系统执行遥控驾驶指令控制转向拉杆行程予以实现.基于系统输入/输出关系构建了遥控转向操纵闭环系统模型,分析了遥控车辆的转向操纵特性.从人工转向操纵的特点出发,针对遥控信息环节引入的时间滞后,设计了预测和断续转向控制方法.试验证明,转向控制方法能够满足遥控履带车辆的方向控制要求.  相似文献   

5.
为研究履带车辆稳态转向载荷比的变化规律,根据履带车辆转向过程中履带与地面之间的相互作用关系,建立了履带车辆稳态转向模型和履带车辆转向载荷比模型。分析了转向机构、接地压力分布形式、转向速度对转向载荷比影响。最后对某安装差速式转向机构的履带车辆开展了稳态转向试验,进行数据处理和结果对比。结果表明:车辆转向载荷比试验数据与理论计算结果有很好的一致性,验证了转向载荷比模型的准确性,为下一步履带车辆转向机构动力源的设计奠定了一定的基础。  相似文献   

6.
主动转向系统能通过主动转角补偿的方式实现横摆力矩控制,以改善车辆转向稳定性。针对横摆力矩控制,提出了基于T-S模糊理论的LQR多目标控制器的主动转向系统。该系统综合考虑主动转向系统的有效工作区间和车辆操纵模型中轮胎的非线性问题,采用T-S模糊理论建立了主动转向系统模型,并基于横摆角速度和车辆侧偏角这两个控制变量,设计了LQR多目标控制器。仿真分析结果表明,所提出的基于T-S模糊理论的LQR多目标控制器的主动转向系统整体上能降低横摆角速度、车辆侧偏角和侧向加速度,并快速达到稳定状态。该系统能有效改善车辆的转向稳定性,从而为主动转向系统的设计和应用提供理论参考与方法依据。  相似文献   

7.
液压机械差速转向机构是结合了液压传动无级调速和机械传动高效率等优点的一种新型履带车辆转向机构。本文根据履带车辆的转向特点,对液压机械差速转向操纵系统组成及工作原理进行分析,建立转向操纵系统运动模型和仿真模型,仿真分析其动态特性。仿真结果表明,所设计的转向操纵系统具有良好的稳定性和动态特性,能满足履带车辆液压机械差速转向行驶要求。  相似文献   

8.
为了减小驾驶机器人车辆长期自动驾驶过程中转向性能下降带来的影响,提出了一种基于多新息的驾驶机器人车辆动态转向力矩补偿方法。构建了车辆动力学模型和驾驶机器人车辆动力学模型;建立了以路径曲率及车速为输入、方向盘转向角为输出的驾驶机器人车辆转向性能离线自学习模型;建立了以方向盘角速度、角加速度及车轮转角为输入,转向机械手驱动力矩为输出的受控自回归在线辨识模型,并运用遗忘因子多新息最小二乘方法进行参数辨识,将迭代计算过程中的标量新息扩展为向量新息,提高了驾驶机器人车辆转向性能参数的辨识精度;驾驶机器人车辆自动驾驶过程中,利用离线自学习模型和转向机械手动力学方程计算出转向电机输出力矩,加上反馈回来的驱动力矩误差,实现对驾驶机器人车辆转向力矩的在线动态补偿。仿真与试验结果对比表明:所提方法辨识的转向力矩误差在0.1N·m以内,跟踪目标路径的横向位移偏差小于0.2m;所提方法有效减小了驾驶机器人车辆转向性能下降造成的影响。  相似文献   

9.
本文介绍了一种计算高速履带车辆动力传动系统在非稳定行驶时动载荷的方法,此法将复杂的车辆传动系统,简化为集中弹性质量系统,建立动力模型、数学模型以及编制计算程序在电子计算机上求解微分方程组。并对车辆传动系在非稳定行驶工况的激励力作了分析建立了计算公式。应用提出的方法对某重型履带车辆在非稳定工况传动系统动态性能和载荷进行了计算,并与实车道路试验测得的数据进行对比。  相似文献   

10.
以二自由度整车操纵稳定性研究为基础,建立车身零侧偏角的前馈控制策略对四轮转向车辆实施控制.在MATLAB中建立前轮转向、四轮转向车辆模型,并在角阶跃工况下进行仿真,发现其存在横摆角速度损失的缺陷,提出PID车身横摆角补偿控制策略,通过建模在角阶跃工况下仿真.结果表明:横摆角速度补偿控制策略可较好地解决车辆转向灵敏度的问题.  相似文献   

11.
本文设计了一种基于灰色理论的AUV舵机控制系统,硬件采用STM32单片机及CAN总线.仿真结果和实际测试表明,在超调量、调节时间等方面,系统性能较传统PID控制得到了明显改善.  相似文献   

12.
为实现静液传动履带车辆快速稳定转向,且转向轨迹可控,基于双侧轮边液压驱动结构特点,提出了转向时外侧马达排量采用压力、发动机转速双参数控制,内侧采用神经元自适应PID控制以跟随外侧的转向控制策略. 在Matlab/Simulink中建立了包含基于S函数的神经元PID控制器和综合控制策略Stateflow模块的整车模型,对转向控制进行仿真分析,阶跃输入时,神经元PID比传统PID控制能有效抑制系统超调量,加快系统响应速度;不同转向工况仿真结果表明:神经元PID控制具有较好的目标跟随能力,提高了系统的实时性和鲁棒性,使得静液传动履带车辆具有良好的转向性能.   相似文献   

13.
朱永强  李运洪 《科学技术与工程》2020,20(35):14689-14693
在ADAMS/View中建立五轴汽车模型,为实现联合仿真,在Simulink中建立可视化的控制模型,该系统可以实现PID/D(基于横摆角速度的PID策略用于动态调整D值,其中D为转向中心到第一轴的距离)和FD(D值固定,Fixed D value)控制模式的切换。为验证PID/D控制策略的可行性,进行了方向盘转角脉冲仿真对比试验,并按照有关标准进行评分。结果表明:PID/D控制策略的仿真试验的评分结果为77.51,FD控制策略的仿真试验的评分结果为76.3,PID/D控制策略的评分结果高了1.58%。  相似文献   

14.
提出了一种后轮脉冲主动转向控制策略,运用脉冲信号作为控制器输出的后轮主动转向控制方法,对此做了理论分析和试验研究.首先,设计了产生脉冲信号的液压系统,并分析了此系统的运行对悬架参数和车辆稳态和瞬态响应的影响;分析不同脉冲参数(频率,振幅)对车辆横摆运动的影响并确定最优的脉冲参数.其次,综合跟随理想横摆角速度和抑制汽车质心侧偏角的方法,提出了控制策略与算法;运用基于CarSim和Simulink的联合仿真方法,分析此系统对汽车横摆稳定性能的影响;最后,安装液压脉冲发生器进行整车试验研究,验证仿真结果的可信性,并评价后轮脉冲转向的实用性.仿真和试验结果表明:后轮脉冲主动转向能够有效的跟踪横摆角速度和质心侧偏角提高车辆的横摆稳定性,同时可以减少质心侧倾角和侧向加速度,提高汽车的操纵稳定性.  相似文献   

15.
四轮转向汽车路径跟随控制   总被引:1,自引:0,他引:1  
路径跟随控制是汽车实现自动驾驶的重要工具,已在前轮转向汽车上取得了较好的效果,但是前轮转向汽车的路径跟随控制不完全适用于四轮转向汽车.对此,基于横向误差,提出一种四轮转向汽车路径跟随模糊控制算法.首先,建立响应面模型作为优化目标函数.然后,利用遗传算法对模糊控制器进行优化设计.最后,通过Carsim-Simulink联合仿真实验,对该算法进行验证.仿真结果表明,路径跟随横向误差得到有效降低,车身质心侧偏角也控制在0.6°以内.该算法能够实现精准的路径跟随,并提高汽车的操纵稳定性.  相似文献   

16.
构建某电液控制转向缸在因特网环境下的远程闭环控制模型.从时滞依赖鲁棒稳定控制理论的角度,设计一种根据网络时延所满足的时滞条件进行动态切换的控制器;从网络时延序列复杂性测度的角度,设计一种自适应加窗滑动平均时延预测算法,为控制提供切换依据.实验结果验证了这种基于模糊熵时延预测的自切换鲁棒控制器的可行性和有效性.  相似文献   

17.
提出一种基于定量反馈理论的主动前轮转向策略,通过反馈控制系统控制汽车的动态特性,以跟踪汽车转向理想横摆角速度。进而提出了基于定量反馈理论的主动四轮转向策略,使得汽车重心处的侧偏角和车体横摆角速度实现了解耦控制。多种情况下的非线性仿真结果表明,给出的鲁棒解耦控制系统具有很好的控制特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号