首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
高速摄像机图像处理法确定风口回旋区边界   总被引:1,自引:1,他引:0  
通过建立COREX熔化气化炉的对称半体冷态模型,利用高速摄影的手段跟踪示踪颗粒,得到观察面板处风口回旋区域的颗粒运动信息.通过对大量颗粒运动信息的处理得到风口回旋区的颗粒速度标量场,将其与目测结果对比,确定0.15m/s以内的颗粒速度标量场为风口回旋区域.本研究结果可为COREX熔化气化炉及高炉等的理论研究或数学模拟提供准确的边界条件.  相似文献   

2.
为了研究COREX-C3000气化炉,开发了COREX工艺静态模型和实验系统.COREX工艺静态模型是建立在物料平衡和热量平衡基础上的,根据生产现场工艺操作参数设定输入参数,计算结果用于物理实验参数的设定.COREX物理实验系统是建立在相似原理基础上的,模型设有插入式热电偶和观察面板,可获得模型内部信息.实验发现,随着排料速度、石蜡颗粒和玉米颗粒体积比、风温和风量等实验参数增大,风口回旋区越容易发生塌料现象,并初步分析风口回旋区内塌料的影响.  相似文献   

3.
建立COREX熔化气化炉的半周三维冷态模型,利用高速摄影的方法跟踪冷态模型内示踪粒子的运动,得到冷模型观察面板处风口回旋区的颗粒运动信息,通过对大量颗粒运动信息的处理得到风口回旋区范围的颗粒速度标量场,运用分形理论对利用不同颗粒速度大小等值线界定的回旋区边界的"不规则"程度进行了研究,准确界定了风口回旋区边界.研究结果为风口回旋区的宏观动力学计算以及数值模拟提供准确的边界条件.  相似文献   

4.
建立COREX竖炉三维半周冷态模型,物理模拟炉内结构对物料运动的影响,考察不同操作条件下AGD梁及导流锥对物料运动流型的改变。模拟结果显示:无AGD梁COREX竖炉内物料运动流型呈现‘一’→‘U’→‘W’的演变过程,而AGD竖炉则在围管区域经历波浪型及初始‘W’流型,AGD梁影响围管区域物料的均匀下降。非工况单侧停机条件下,AGD竖炉内物料活跃区面积减小,死料区面积增大,易引起炉内无滑移物料的接触挤压时间变长,导致炉料的黏结结块,造成炉况的进一步恶化。非对称排料(7.29~14.6 r/min)时,无AGD竖炉上方物料均匀下降,而AGD竖炉内一侧物料运动行为相对独立于另一侧。竖炉下部导流锥有利于促进竖炉上部物料均匀下降和竖炉下部的顺滑排料。  相似文献   

5.
利用温度梯度分析COREX熔化气化炉内区域   总被引:1,自引:1,他引:0  
建立了COREX熔化气化炉热态模型;利用石蜡模拟矿石,玉米颗粒模拟焦炭,通过温度传感器对炉内气相温度进行了测定.对测得的模型内温度信息进行处理,可以获得模型内温度梯度.对熔化气化炉在高度方向的温度梯度进行分析,可大致区分炉内填充床、软熔区域、半焦床以及风口回旋区的范围.该研究方法可以比较客观地描述COREX熔化气化炉内部的各区域,以便在进一步研究中分析操作条件变化对炉内各个区域的影响.  相似文献   

6.
为了模拟COREX熔化气化炉软熔区域,建立了COREX熔化气化炉热态模型,设有热电偶和观察面板,可获得模型内部信息.在热态物理模拟实验中,考察了排料速度、石蜡与玉米体积比、风温和风量等操作参数对软熔区域的影响.实验结果表明,随着所选实验参数值的增加,风口回旋区发生塌料现象的可能性增加;当排料速度增加时,软熔区域位置降低,厚度减少;当石蜡与玉米体积比增加时,塌料前软熔区域位置升高,厚度增加,塌料后软熔区域位置降低,厚度增加;当风温增加时,塌料前软熔区域位置升高,厚度增加,塌料后软熔区域位置降低,厚度减少;当风量增加时,发生塌料前后软熔区域都位置升高,厚度增加.  相似文献   

7.
风口回旋区的传热传质过程与其内表面积密切相关.以COREX熔化气化炉物理模拟为基础,运用欧氏理论和分形理论确定了不同条件下回旋区的内表面积.结果表明:运用分形理论计算的回旋区内表面积较欧氏理论计算的回旋区内表面积大;随着气量增大,回旋区内表面积增大;随床层高度增大,回旋区内表面积减小;随排料速度增大,回旋区内表面积增大.  相似文献   

8.
COREX熔化气化炉风口回旋区是炉况顺行的基础,在冶炼过程中起着十分重要的作用,为了描述其形状和大小,建立了CFD+DEM(ComputationalFluidDynamicsandDiscreteElementMethod)耦合模型,对回旋区形成过程及大小进行了颗粒尺度的分析.得到床层高度为04m,气体速度1174m/s的条件下回旋区颗粒空隙度分布,当吹气时间为013s时,气体入口附近有颗粒被吹开,随着时间的推进,气体动能吹开的颗粒增多,019~021s时,形成的回旋区开始稳定.对入口处不同气体速度条件下回旋区及其附近颗粒速度进行了计算模拟.模拟结果显示,风口附近颗粒在做回旋运动,并且随着入口气体速度的增大,吹开的颗粒增多,回旋区空腔增大,当入口气体速度为1174m/s和1683m/s时形成的回旋区较稳定,当入口气体速度大于2190m/s时形成的回旋区不太稳定.  相似文献   

9.
基于离散单元数值计算方法,建立COREX竖炉内物料颗粒尺度运动行为的数学模型,研究炉内物料运动流型及其瞬态特性,特别是颗粒的瞬态速度和瞬态应力分布.模拟结果表明:COREX竖炉内存在三种类型的流动区域:活塞流区、准停滞区以及沟流区.炉内颗粒的瞬态速度分布表明炉内存在两种类型的速度波:装料过程引发的向下传播的速度波和底部排料引发的向上传播的速度波.COREX竖炉内颗粒法向应力随时间的变化较小,竖炉底部导流锥顶部存在较强的应力区,而无导流锥竖炉底部中心存在较强应力区,沟流区的应力较弱.  相似文献   

10.
休风时对COREX熔融气化炉进行风口取样,通过对风口试样的检测分析,用压差度的倒数表示炉内气相对料柱透液性的影响,用空隙度和温度强度的乘积表示炉内的渣铁液相对料柱透液性的影响,建立了表征熔融气化炉料柱透液性的公式.对两批风口试样的研究发现,熔融气化炉内不同位置风口试样的透液性指数与相应位置的滞留铁比呈现一致的对应关系.进一步分析了透液性指数的影响因素,发现在炉况不顺时,未反应完全的酸性脉石直接落入炉缸,导致沿风口径向部分位置的渣样熔化温度高于1500℃,影响了渣铁流动性.提出了增加料层厚度、采取合理的造渣制度、控制均匀的煤气流分布等技术措施,为改善熔融气化炉内料柱的透液性提供帮助.  相似文献   

11.
建立COREX工艺熔融气化炉移动床区域炉料流动的DEM模型。通过炉料自然堆积过程的DEM模拟,确定了固体颗粒之间的滚动摩擦系数。炉料流动的DEM模拟结果与试验研究结果吻合的较好。研究了移动床区域炉料的流动规律、死料柱形状及尺寸以及颗粒间法向应力的分布规律,同时分析了风口回旋区炉料消耗速率对应力分布的影响。研究结果表明:熔融气化炉移动床区域可分为四个不同的子区域,死料柱区域法向力最大,其次为壁面附近区域,稳定流动区和活跃区内颗粒之间法向力最小。  相似文献   

12.
借鉴高炉的Rist(里斯特)操作线原理,建立了COREX流程冶炼过程中的物料平衡和热平衡方程.高挥发分的块煤作为其主要燃料,入炉裂解会产生大量H2,因此必须考虑其对上部竖炉和下部熔融气化炉Rist操作线的影响.通过热力学计算,将上、下部操作线模型有机结合起来,建立COREX全流程的Rist操作线数学模型.提出了降低COREX燃料消耗的措施,如提高金属化率、改变入炉燃料结构等.模型计算结果显示,COREX炉在使用低质焦炭代替块煤后,理论上可以节约1747kg燃料,氧气消耗量可降低188%.  相似文献   

13.
COREX-3000熔化气化炉内煤气流分布直接影响炉内煤气利用率及炉料顺行,而布料制度是调节煤气流分布的主要手段。为探讨熔化气化炉布料模式,通过对物料在布料过程中的运动和受力分析,确定物料的落点位置并根据物料的安息角和质量守恒,建立了料面形状预测模型。在此基础上,结合数学知识和计算机技术,开发了COREX-3000气化炉的料面预测仿真软件,可预测万向布料器和DRI-flap布料器不同布料制度下形成的料流轨迹、落点位置以及料面形状,为现场选择和调整布料制度提供参考。  相似文献   

14.
为提升COREX熔融气化炉内冶炼效率,根据COREX熔融气化炉填充床含铁炉料的还原特征,采用"历程"分割法,进行实验室高温还原模拟试验。对还原过程中含铁炉料还原及直接还原比例进行考察,在此基础上,单一改变还原气体流量、还原气体成分以及预还原炉料金属化率,考察其对含铁炉料还原及直接还原比例的影响。研究结果表明增大熔融气化炉内低温段区间、提高还原煤气流量、提升还原煤气中氢的含量等措施可降低直接还原比例。  相似文献   

15.
建立了二维COREX熔化气化炉物理模型.利用石蜡模拟DRI,玉米粒子模拟焦炭和块煤,通过高速摄像仪对炉内软熔区域变化进行记录,根据实验前后炉内物料颜色的变化,提出一种图像处理方法.利用该方法可以得到炉内软熔区域边界,从而得到其位置及厚度.对本实验条件下软熔区域的变化过程进行了分析,所提方法可在进一步研究中分析操作条件变化对炉内软熔区域的影响.  相似文献   

16.
基于离散元数值计算方法,建立了高炉内炉料颗粒尺度运动行为的数学模型,主要研究固体炉料的运动模式和颗粒间相互作用力链的分布.结果表明:建立的离散元模型计算获得了炉内颗粒间的介观力链结构,炉底中心部位存在强力链结构支撑高炉料柱,最强力链结构对应于死料柱区,而且离散元模拟也给出炉内固体料运动模式由四个区域构成,分别为死料柱区、活塞流区、准静态滑流区和沟流区,而沟流区的力链最弱.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号