首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Origin of the orbital architecture of the giant planets of the Solar System   总被引:3,自引:0,他引:3  
Tsiganis K  Gomes R  Morbidelli A  Levison HF 《Nature》2005,435(7041):459-461
Planetary formation theories suggest that the giant planets formed on circular and coplanar orbits. The eccentricities of Jupiter, Saturn and Uranus, however, reach values of 6 per cent, 9 per cent and 8 per cent, respectively. In addition, the inclinations of the orbital planes of Saturn, Uranus and Neptune take maximum values of approximately 2 degrees with respect to the mean orbital plane of Jupiter. Existing models for the excitation of the eccentricity of extrasolar giant planets have not been successfully applied to the Solar System. Here we show that a planetary system with initial quasi-circular, coplanar orbits would have evolved to the current orbital configuration, provided that Jupiter and Saturn crossed their 1:2 orbital resonance. We show that this resonance crossing could have occurred as the giant planets migrated owing to their interaction with a disk of planetesimals. Our model reproduces all the important characteristics of the giant planets' orbits, namely their final semimajor axes, eccentricities and mutual inclinations.  相似文献   

2.
An abundant population of small irregular satellites around Jupiter   总被引:1,自引:0,他引:1  
Sheppard SS  Jewitt DC 《Nature》2003,423(6937):261-263
Irregular satellites have eccentric orbits that can be highly inclined or even retrograde relative to the equatorial planes of their planets. These objects cannot have formed by circumplanetary accretion, unlike the regular satellites that follow uninclined, nearly circular and prograde orbits. Rather, they are probably products of early capture from heliocentric orbits. Although the capture mechanism remains uncertain, the study of irregular satellites provides a window on processes operating in the young Solar System. Families of irregular satellites recently have been discovered around Saturn (thirteen members, refs 6, 7), Uranus (six, ref. 8) and Neptune (three, ref. 9). Because Jupiter is closer than the other giant planets, searches for smaller and fainter irregular satellites can be made. Here we report the discovery of 23 new irregular satellites of Jupiter, so increasing the total known population to 32. There are five distinct satellite groups, each dominated by one relatively large body. The groups were most probably produced by collisional shattering of precursor objects after capture by Jupiter.  相似文献   

3.
The origin of Phoebe, which is the outermost large satellite of Saturn, is of particular interest because its inclined, retrograde orbit suggests that it was gravitationally captured by Saturn, having accreted outside the region of the solar nebula in which Saturn formed. By contrast, Saturn's regular satellites (with prograde, low-inclination, circular orbits) probably accreted within the sub-nebula in which Saturn itself formed. Here we report imaging spectroscopy of Phoebe resulting from the Cassini-Huygens spacecraft encounter on 11 June 2004. We mapped ferrous-iron-bearing minerals, bound water, trapped CO2, probable phyllosilicates, organics, nitriles and cyanide compounds. Detection of these compounds on Phoebe makes it one of the most compositionally diverse objects yet observed in our Solar System. It is likely that Phoebe's surface contains primitive materials from the outer Solar System, indicating a surface of cometary origin.  相似文献   

4.
Stern SA  Weissman PR 《Nature》2001,409(6820):589-591
The Oort cloud of comets was formed by the ejection of icy planetesimals from the region of giant planets--Jupiter, Saturn, Uranus and Neptune--during their formation. Dynamical simulations have previously shown that comets reach the Oort cloud only after being perturbed into eccentric orbits that result in close encounters with the giant planets, which then eject them to distant orbits about 10(4) to 10(5) AU from the Sun (1 AU is the average Earth-Sun distance). All of the Oort cloud models constructed until now simulate its formation using only gravitational effects; these include the influence of the Sun, the planets and external perturbers such as passing stars and Galactic tides. Here we show that physical collisions between comets and small debris play a fundamental and hitherto unexplored role throughout most of the ejection process. For standard models of the protosolar nebula (starting with a minimum-mass nebula) we find that collisional evolution of comets is so severe that their erosional lifetimes are much shorter than the timescale for dynamical ejection. It therefore appears that collisions will prevent most comets escaping from most locations in the region of the giant planets until the disk mass there declines sufficiently that the dynamical ejection timescale is shorter than the collisional lifetime. One consequence is that the total mass of comets in the Oort cloud may be less than currently believed.  相似文献   

5.
特洛伊小天体与行星同享一个轨道,并与太阳、行星在空间构成等边三角形,最早为人们所知的特洛伊小天体是位于木星轨道上并位于木星前(后)方60°的两群小天体.而海王星特洛伊小天体则是近20年来太阳系内最重要的发现之一.观测证据表明海王星特洛伊小天体的总数量和总质量远超过木星特洛伊小天体和主带小行星,是太阳系内仅次于柯伊伯带的第二大小天体集群.它们一方面具有独特的轨道特征,另一方面又联系着海王星轨道内、外的空间,自然而然地成为检验太阳系起源与演化的试金石.我们简要介绍了对海王星特洛伊小天体的观测结果、对它们的轨道动力学和起源研究的进展.  相似文献   

6.
The giant planets in the Solar System each have two groups of satellites. The regular satellites move along nearly circular orbits in the planet's orbital plane, revolving about it in the same sense as the planet spins. In contrast, the so-called irregular satellites are generally smaller in size and are characterized by large orbits with significant eccentricity, inclination or both. The differences in their characteristics suggest that the regular and irregular satellites formed by different mechanisms: the regular satellites are believed to have formed in an accretion disk around the planet, like a miniature Solar System, whereas the irregulars are generally thought to be captured planetesimals. Here we report the discovery of 12 irregular satellites of Saturn, along with the determinations of their orbits. These orbits, along with the orbits of irregular satellites of Jupiter and Uranus, fall into groups on the basis of their orbital inclinations. We interpret this result as indicating that most of the irregular moons are collisional remnants of larger satellites that were fragmented after capture, rather than being captured independently.  相似文献   

7.
Methane hydrate is thought to have been the dominant methane-containing phase in the nebula from which Saturn, Uranus, Neptune and their major moons formed. It accordingly plays an important role in formation models of Titan, Saturn's largest moon. Current understanding assumes that methane hydrate dissociates into ice and free methane in the pressure range 1-2 GPa (10-20 kbar), consistent with some theoretical and experimental studies. But such pressure-induced dissociation would have led to the early loss of methane from Titan's interior to its atmosphere, where it would rapidly have been destroyed by photochemical processes. This is difficult to reconcile with the observed presence of significant amounts of methane in Titan's present atmosphere. Here we report neutron and synchrotron X-ray diffraction studies that determine the thermodynamic behaviour of methane hydrate at pressures up to 10 GPa. We find structural transitions at about 1 and 2 GPa to new hydrate phases which remain stable to at least 10 GPa. This implies that the methane in the primordial core of Titan remained in stable hydrate phases throughout differentiation, eventually forming a layer of methane clathrate approximately 100 km thick within the ice mantle. This layer is a plausible source for the continuing replenishment of Titan's atmospheric methane.  相似文献   

8.
采用三维N体模拟研究了在太阳星云盘中木星完全形成后土星核的快速形成.除了考虑太阳,木星及行星胚胎间的引力相互作用,还考虑了使行星胚胎发生Ⅰ型迁移和轨道圆化效应的气体盘潮汐作用.模拟表明:木星的平运动共振构型和行星Ⅰ型迁移大大地提高了行星胚胎的碰撞吸积率,同时木星的引力摄动有效地阻止大行星胚胎过快向内迁移而落入太阳中,最终在两百万年的时间内有可能在雪线之外靠近木星3:2平运动共振处吸积形成一颗土星核.  相似文献   

9.
Chaotic capture of Jupiter's Trojan asteroids in the early Solar System   总被引:1,自引:0,他引:1  
Morbidelli A  Levison HF  Tsiganis K  Gomes R 《Nature》2005,435(7041):462-465
Jupiter's Trojans are asteroids that follow essentially the same orbit as Jupiter, but lead or trail the planet by an angular distance of approximately 60 degrees (co-orbital motion). They are hypothesized to be planetesimals that formed near Jupiter and were captured onto their current orbits while Jupiter was growing, possibly with the help of gas drag and/or collisions. This idea, however, cannot explain some basic properties of the Trojan population, in particular its broad orbital inclination distribution, which ranges up to approximately 40 degrees (ref. 8). Here we show that the Trojans could have formed in more distant regions and been subsequently captured into co-orbital motion with Jupiter during the time when the giant planets migrated by removing neighbouring planetesimals. The capture was possible during a short period of time, just after Jupiter and Saturn crossed their mutual 1:2 resonance, when the dynamics of the Trojan region were completely chaotic. Our simulations of this process satisfactorily reproduce the orbital distribution of the Trojans and their total mass.  相似文献   

10.
Stanley S  Bloxham J 《Nature》2004,428(6979):151-153
The discovery of Uranus' and Neptune's non-dipolar, non-axisymmetric magnetic fields destroyed the picture--established by Earth, Jupiter and Saturn--that planetary magnetic fields are dominated by axial dipoles. Although various explanations for these unusual fields have been proposed, the cause of such field morphologies remains unexplained. Planetary magnetic fields are generated by complex fluid motions in electrically conducting regions of the planets (a process known as dynamo action), and so are intimately linked to the structure and evolution of planetary interiors. Determining why Uranus and Neptune have different field morphologies is not only critical for studying the interiors of these planets, but also essential for understanding the dynamics of magnetic-field generation in all planets. Here we present three-dimensional numerical dynamo simulations that model the dynamo source region as a convecting thin shell surrounding a stably stratified fluid interior. We show that this convective-region geometry produces magnetic fields similar in morphology to those of Uranus and Neptune. The fields are non-dipolar and non-axisymmetric, and result from a combination of the stable fluid's response to electromagnetic stress and the small length scales imposed by the thin shell.  相似文献   

11.
Canup RM  Ward WR 《Nature》2006,441(7095):834-839
The Solar System's outer planets that contain hydrogen gas all host systems of multiple moons, which notably each contain a similar fraction of their respective planet's mass (approximately 10(-4)). This mass fraction is two to three orders of magnitude smaller than that of the largest satellites of the solid planets (such as the Earth's Moon), and its common value for gas planets has been puzzling. Here we model satellite growth and loss as a forming giant planet accumulates gas and rock-ice solids from solar orbit. We find that the mass fraction of its satellite system is regulated to approximately 10(-4) by a balance of two competing processes: the supply of inflowing material to the satellites, and satellite loss through orbital decay driven by the gas. We show that the overall properties of the satellite systems of Jupiter, Saturn and Uranus arise naturally, and suggest that similar processes could limit the largest moons of extrasolar Jupiter-mass planets to Moon-to-Mars size.  相似文献   

12.
The accretion of bodies in the asteroid belt was halted nearly 4.6 billion years ago by the gravitational influence of the newly formed giant planet Jupiter. The asteroid belt therefore preserves a record of both this earliest epoch of Solar System formation and variation of conditions within the solar nebula. Spectral features in reflected sunlight indicate that some asteroids have experienced sufficient thermal evolution to differentiate into layered structures. The second most massive asteroid--4 Vesta--has differentiated to a crust, mantle and core. 1 Ceres, the largest and most massive asteroid, has in contrast been presumed to be homogeneous, in part because of its low density, low albedo and relatively featureless visible reflectance spectrum, similar to carbonaceous meteorites that have suffered minimal thermal processing. Here we show that Ceres has a shape and smoothness indicative of a gravitationally relaxed object. Its shape is significantly less flattened than that expected for a homogeneous object, but is consistent with a central mass concentration indicative of differentiation. Possible interior configurations include water-ice-rich mantles over a rocky core.  相似文献   

13.
Gurnett DA  Kurth WS 《Nature》2008,454(7200):78-80
Plasma waves are a characteristic feature of shocks in plasmas, and are produced by non-thermal particle distributions that develop in the shock transition layer. The electric fields of these waves have a key role in dissipating energy in the shock and driving the particle distributions back towards thermal equilibrium. Here we report the detection of intense plasma-wave electric fields at the solar wind termination shock. The observations were obtained from the plasma-wave instrument on the Voyager 2 spacecraft. The first evidence of the approach to the shock was the detection of upstream electron plasma oscillations on 1 August 2007 at a heliocentric radial distance of 83.4 au (1 au is the Earth-Sun distance). These narrowband oscillations continued intermittently for about a month until, starting on 31 August 2007 and ending on 1 September 2007, a series of intense bursts of broadband electrostatic waves signalled a series of crossings of the termination shock at a heliocentric radial distance of 83.7 au. The spectrum of these waves is quantitatively similar to those observed at bow shocks upstream of Jupiter, Saturn, Uranus and Neptune.  相似文献   

14.
Astakhov SA  Burbanks AD  Wiggins S  Farrelly D 《Nature》2003,423(6937):264-267
It has been thought that the capture of irregular moons--with non-circular orbits--by giant planets occurs by a process in which they are first temporarily trapped by gravity inside the planet's Hill sphere (the region where planetary gravity dominates over solar tides). The capture of the moons is then made permanent by dissipative energy loss (for example, gas drag) or planetary growth. But the observed distributions of orbital inclinations, which now include numerous newly discovered moons, cannot be explained using current models. Here we show that irregular satellites are captured in a thin spatial region where orbits are chaotic, and that the resulting orbit is either prograde or retrograde depending on the initial energy. Dissipation then switches these long-lived chaotic orbits into nearby regular (non-chaotic) zones from which escape is impossible. The chaotic layer therefore dictates the final inclinations of the captured moons. We confirm this with three-dimensional Monte Carlo simulations that include nebular drag, and find good agreement with the observed inclination distributions of irregular moons at Jupiter and Saturn. In particular, Saturn has more prograde irregular moons than Jupiter, which we can explain as a result of the chaotic prograde progenitors being more efficiently swept away from Jupiter by its galilean moons.  相似文献   

15.
A low mass for Mars from Jupiter's early gas-driven migration   总被引:1,自引:0,他引:1  
Jupiter and Saturn formed in a few million years (ref. 1) from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only ~100,000 years (ref. 2). Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later, and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 au is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 au, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 au; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 au and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.  相似文献   

16.
Johnson TV  Lunine JI 《Nature》2005,435(7038):69-71
The orbital properties of Phoebe, one of Saturn's irregular moons, suggest that it was captured by the ringed planet's gravitational field rather than formed in situ. Phoebe's generally dark surface shows evidence of water ice, but otherwise the surface most closely resembles that of C-type asteroids and small outer Solar System bodies such as Chiron and Pholus that are thought to have originated in the Kuiper belt. A close fly-by of Phoebe by the Cassini-Huygens spacecraft on 11 June 2004 (19 days before the spacecraft entered orbit around Saturn) provided an opportunity to test the hypothesis that this moon did not form in situ during Saturn's formation, but is instead a product of the larger protoplanetary disk or 'solar nebula'. Here we derive the rock-to-ice ratio of Phoebe using its density combined with newly measured oxygen and carbon abundances in the solar photosphere. Phoebe's composition is close to that derived for other solar nebula bodies such as Triton and Pluto, but is very different from that of the regular satellites of Saturn, supporting Phoebe's origin as a captured body from the outer Solar System.  相似文献   

17.
 利用通用天文软件SKYMap Pro Version 8提供的大行星冲日资料和计算得到的各大行星视赤经资料,分析了行星相对位置与ENSO之间的相互关系,结果发现两者之间存在明显联系,主要有:三大行星(火、木、土)在3月冲日,有利于在当年发生EL-Nino事件,且火星和木星对应的事件持续时间都较长,特别是木星3月冲日与1990s以后的2次EL-Nino群发期有很好的对应,与土星对应的事件持续较短.火星和木星在8月冲日有利于次年发生EL-Nino现象,土星则不明显.火星和木星在9月冲日容易在当年发生LA-Nina现象,而土星在9月冲日的头一年易发生EL-Nino,次年易发生LA-Nina.对行星的视赤经与赤道太平洋海温关键区之间相互关联的非偶然性检验表明,只有木星和土星存在相关区.木星视赤经相对于Nino 4海温距平大于0的概率呈现偏心结构,并存在2个奇对称区域;土星的对应区相对比较均匀,存在3个偶对称区域,且彼此相差60°,在空间上构成六角型结构.  相似文献   

18.
Since 1995, more than 500 exoplanets have been detected using different techniques, of which 12 were detected with gravitational microlensing. Most of these are gravitationally bound to their host stars. There is some evidence of free-floating planetary-mass objects in young star-forming regions, but these objects are limited to massive objects of 3 to 15 Jupiter masses with large uncertainties in photometric mass estimates and their abundance. Here, we report the discovery of a population of unbound or distant Jupiter-mass objects, which are almost twice (1.8(+1.7)(-0.8)) as common as main-sequence stars, based on two years of gravitational microlensing survey observations towards the Galactic Bulge. These planetary-mass objects have no host stars that can be detected within about ten astronomical units by gravitational microlensing. However, a comparison with constraints from direct imaging suggests that most of these planetary-mass objects are not bound to any host star. An abrupt change in the mass function at about one Jupiter mass favours the idea that their formation process is different from that of stars and brown dwarfs. They may have formed in proto-planetary disks and subsequently scattered into unbound or very distant orbits.  相似文献   

19.
Brown ME  Barkume KM  Ragozzine D  Schaller EL 《Nature》2007,446(7133):294-296
The small bodies in the Solar System are thought to have been highly affected by collisions and erosion. In the asteroid belt, direct evidence of the effects of large collisions can be seen in the existence of separate families of asteroids--a family consists of many asteroids with similar orbits and, frequently, similar surface properties, with each family being the remnant of a single catastrophic impact. In the region beyond Neptune, in contrast, no collisionally created families have hitherto been found. The third largest known Kuiper belt object, 2003 EL61, however, is thought to have experienced a giant impact that created its multiple satellite system, stripped away much of an overlying ice mantle, and left it with a rapid rotation. Here we report the discovery of a family of Kuiper belt objects with surface properties and orbits that are nearly identical to those of 2003 EL61. This family appears to be fragments of the ejected ice mantle of 2003 EL61.  相似文献   

20.
Rapid planetesimal formation in turbulent circumstellar disks   总被引:1,自引:0,他引:1  
Johansen A  Oishi JS  Mac Low MM  Klahr H  Henning T  Youdin A 《Nature》2007,448(7157):1022-1025
During the initial stages of planet formation in circumstellar gas disks, dust grains collide and build up larger and larger bodies. How this process continues from metre-sized boulders to kilometre-scale planetesimals is a major unsolved problem: boulders are expected to stick together poorly, and to spiral into the protostar in a few hundred orbits owing to a 'headwind' from the slower rotating gas. Gravitational collapse of the solid component has been suggested to overcome this barrier. But even low levels of turbulence will inhibit sedimentation of solids to a sufficiently dense midplane layer, and turbulence must be present to explain observed gas accretion in protostellar disks. Here we report that boulders can undergo efficient gravitational collapse in locally overdense regions in the midplane of the disk. The boulders concentrate initially in transient high pressure regions in the turbulent gas, and these concentrations are augmented a further order of magnitude by a streaming instability driven by the relative flow of gas and solids. We find that gravitationally bound clusters form with masses comparable to dwarf planets and containing a distribution of boulder sizes. Gravitational collapse happens much faster than radial drift, offering a possible path to planetesimal formation in accreting circumstellar disks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号