首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基因学说是影响整个遗传学发展的基础理论。基因研究的发展过程,大体上可以分为两个不同的历史阶段。在本世纪五十年代以前,主要从细胞染色体水平进行研究,属于基因的染色体遗传学阶段;五十年代以后则主要从DNA大分子水平上进行研究,属于基因的分子遗传学阶段。从孟德尔遗传定律的提出到沃森-克里克DNA双螺旋结构的发现的有关历程,  相似文献   

2.
基因组 genomeGenome这个名词于1922年第一次出现在遗传学文献中。中文译名为染色体组,后又译为基因组。随着遗传学研究的进展对基因组的涵义不断地赋以新的内容。一般的定义是单倍体细胞中的全套染色体为一个基因组,或是单倍体细胞中的全部基因为一个基因组。可是基因组测序的结果发现基因编码序列只占整个基因组序列的很小一部分。比如,人基因组中编码序列只占5%左右,换言之,人基因组中的非编码序列占95%以上。因此,基因组应该指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。说得更确切些,核基因组是单倍体细胞核内的全部DNA分子;线粒体基因组则是一个线粒体所包含的全部DNA分子;叶绿体基因组则是一个叶绿体所包含的全部DNA分子。当然,也有人指出基因组应定义为一个细胞中所携带的全部遗传学指令。这是从基因组的功能着眼,因为基因组中的基因携带着编码产生蛋白质或RNA的遗传指令,同时基因组中的非编码序列携带着启动和调控基因活动的遗传指令。但是,基因组如果定义为全部遗传指令,那么,基因组的测序、作图和基因识别等就不易被人理解,遗传指令又怎么测序和作图呢?人类基因组计划 human genome project,HGP一般是指于1990年美国政府资助启动的研究人类基因组的计划。它被认为是生命科学研究领域中有史以来的第一个“大科学”项目,其意义和影响被誉为不亚于研究原子弹的“曼哈顿计划”和载人飞船登月的“阿波罗计划”。以后世界各国也都有各自的研究人类基因组的计划。HGP的主要内容是美国计划从1990至2005年间,历时15年,资助30亿美元,测定人类基因组的30亿对核苷酸的排列次序。由于实验操作上的考虑,必须把基因组DNA分子先打断成无数个小片段,然后测定每个小片段的核苷酸序列,最后把小片段连接回复到整个基因组。因此在测序前要先作图(mapping),即把每个小片段在整个基因组上的位置确定下来,以便今后可以有序地把小片段连接起来。HGP的工作内容除了作图和测序外,还有基因识别,模式生物(如大肠杆菌、酵母、果蝇、线虫和小鼠等)基因组的测序,发展生物信息学(bioinformatics)和研究HGP对伦理、法律和社会带来的冲击和影响等。在HGP实施过程中,特别是基因识别和基因克隆的成果,显现出巨大的商机。于是一些大跨国公司特别是医药行业的大财团纷纷斥巨资介入人类基因组研究领域。1998年5月美国的塞莱拉基因组学公司(Celera Genomics Inc.)宣布将于2001年完成人类基因组的工作草图(working draft),并于2003年最终完成人类基因组测序,在此态势下,美国政府也于1998年10月宣布调整HGP的工作进度,提前于2003年底前完成基因组测序。2000年6月26日,有美、英、德、日、法和中国参加的国际人类基因组测序联合体与美国塞莱拉公司联合宣布各自分别完成了人类基因组的“工作草图”。中国承担并完成了人类基因组1%的测序,即测定3000万对核苷酸序列。人类基因组工作草图 human genome “working draft”人类基因组的作图和测序是一个由粗到精的过程,是先把整个基因组打断成小片段,然后再把小片段连接复原。工作草图又称框架图,是一幅粗线条地绘制成的基因组图,它的特点有三:①应包含人体绝大多数基因的序列;②由于作图是由小片段连缀而成,所以会因丢失小片段而在图上留下空档(gap),工作草图可以留下空档,但对整个基因组的覆盖率应在90%以上;③草图中核苷酸序列的差错率可以高于最终所要求的万分之一,但不能超过百分之一。作图 mapping基因组研究中,确定遗传标记如基因、酶切位点、特定的DNA序列等在染色体上的位置,并计算它们之间的距离,称为作图。图可以分为遗传图(或遗传连锁图)、物理图两种。遗传图是根据两个遗传标记之间发生重组的频率来确定彼此在染色体上的位置和距离。两者相距远,发生重组的频率高;两者相距近,则连锁很紧密,不易发生重组。如果两个遗传标记分别位于两条染色体上也就不会发生重组。重组发生在细胞减数分裂期间,因此要分析上下代的染色体上的遗传标记出现的频率方能计算出两个标记在染色体上的相对距离。物理图则是把遗传标记直接定位在染色体DNA分子上,彼此间的距离也可用碱基对的多少来标定。基因组DNA测序后的全序列图是最精密的物理图,因为这幅图表明了几十亿个核苷酸的排列次序,标记物就是单个核苷酸。叠连群 contig一组克隆载体中插入的DNA片段,可通过末端的重叠序列相互连接成为一个连续的DNA长片段,这一组DNA片段即构成了一个叠连群。叠连群主要用于DNA测序和基因组作图。因为DNA的测序和作图时,一个很长的DNA分子在实验时是无法操作的,必须把它先切割成为小片段,然后把小片段连接起来,就是通过两个小片段末端共有的序列,相互叠加而连成长片段。因此,叠连群中小片段之间叠加的相同序列越短,研究工作效率则越高。表达序列标签 EST,expressed sequence tag在人类基因组研究中,有一个区别于“全基因组战略”的“cDNA战略”,即只测定转录的DNA序列,也就是测定基因转录产物mRNA反转录产生的互补DNA——cDNA。cDNA代表了基因中编码蛋白质的序列。EST则是cDNA的一个片段,一般长200~400个核苷酸对。一个全长的cDNA分子可以有许多个EST,但特定的EST有时可以代表某个特定的cDNA分子。两端有重叠的共有序列的EST可以组装成一个叠连群(contig),直到装配成全长的cDNA序列,这样就等于是克隆了一个基因的编码序列。将EST定位在基因组,也可作为基因组作图时的一种标记序列。互补DNA cDNA,complementary DNA信使RNA(mRNA)分子的双链DNA拷贝。构成基因的双链DNA分子用一条单链作为模板,转录产生与其序列互补的信使RNA分子,然后在反转录酶的作用下,以mRNA分子为模板,合成一条与mRNA序列互补的单链DNA,最后再以单链DNA为模板合成另一条与其互补的单链DNA,两条互补的单链DNA分子组成一个双链cDNA分子。因此,双链cDNA分子的序列同转录产生的mRNA分子的基因是相同的。所以一个cDNA分子就代表一个基因。但是cDNA仍不同于基因,因为基因在转录产生mRNA时,一些不编码的序列即内含子被删除了,保留的只是编码序列,即外显子。所以cDNA序列都比基因序列要短得多,因为cDNA中不包括基因的非编码序列——内含子。克隆 clone用作名词时,克隆是指由遗传组成完全相同的分子、细胞或个体所组成的一个群体。例如,核苷酸序列完全相同的DNA片段或基因的众多份拷贝,就称为DNA分子克隆或基因克隆。来源同一个祖细胞的基因型完全相同的众多子细胞,就构成了一个细胞克隆。抗原分子刺激后会产生抗体分子,如果是一种抗原分子刺激后产生的是单克隆抗体;如果是多种抗原分子刺激后产生的则是多克隆抗体。通过无性繁殖获得相同基因型的生物体,这是个体克隆,也称为无性繁殖系。用作动词时,克隆是指运用DNA重组技术将某一特定基因或DNA序列,插入一个载体分子,然后将这个重组分子转入宿主细胞中复制增殖,使被插入的基因或DNA分子形成众多的拷贝。克隆也指分离出单个分子或单个细胞的操作过程。例如,克隆基因是指从基因组或DNA大片段中分离出某个基因或某种DNA序列;克隆细胞则是从许多类型的细胞群体中分离出某种特定类型的细胞。用作动名词(cloning)时,指分离出某一特定的基因、DNA分子或细胞后,用一些实验方法使在数量上增多以形成由许多份拷贝构成的一个群体,有时将这一过程称为克隆化。模式生物 model organism在人类基因组研究中十分注重模式生物的研究,这是由于要认识人体基因的功能,无法直接用人体作为实验对象。但是,生物是从共同祖先演化而来的,所以对生命活动有重要功能的基因在进化上是保守的,也就是说,这些基因的结构和功能,在低等生物和高等生物中是相似的。因此,可以用比较容易研究的生物作为模型来研究其基因的结构和生物学功能,由此获得的信息可以使用于其他比较难以研究的生物,特别是推测相似的人体基因的功能。例如,果蝇、小鼠甚至酵母等基因组都有与癌症发生相关的癌基因和抗癌基因,与细胞死亡、衰老有关的基因,以及与引起人类某些遗传病的相关基因。染色体 chromosome指经染料染色后用显微镜可以观察到的一种细胞器。在细菌中,染色体是一个裸露的环状双链DNA分子。在真核生物中,当细胞进行分裂期间染色体呈棒状结构。染色体的数目是随物种而异,但对每一物种而言,染色体的数目是固定的。比如人的染色体在二倍体细胞里是46条,在生殖细胞里则是23条。染色体是由线性双链DNA分子同蛋白质形成的复合物,真核生物的核基因就分藏在每条染色体中,所以,染色体是基因的载体,也就是遗传信息的载体。一个细胞里的全部染色体也就包含了这个生物体的全部遗传信息。序列 sequenceDNA分子是由4种核苷酸(A,T,G,C)排列组成,DNA序列就是组成某一DNA分子的核苷酸的排列次序。蛋白质的一级结构是由20种氨基酸线性排列构成。蛋白质序列就是构成某种蛋白质如氨基酸线性排列次序。因此,测序(sequencing)就是用实验方法,测定DNA分子中核苷酸的种类及其排列次序,或者测定蛋白质分子中氨基酸的种类及其排列次序。人基因组测序是指测定构成人基因组的约30亿个核苷酸的种类及其排列次序。基因组中的DNA序列可以分为两大类:一类是单一序列,即在基因组中这种核苷酸的排列次序只出现一次或只有一份拷贝;另一类是重复序列。指某种核苷酸排列次序在基因组出现的次数或其拷贝数少则几份,十几份,多的可达几万份甚至几十万份。构成基因的极大多数是单一序列。重复序列则基本上全是非编码序列,它们的生物学功能是一个尚未解开的谜团。遗传密码 genetic code这是支配信使RNA(mRNA)分子中4种核苷酸的线性序列,同由它编码的蛋白质中20种氨基酸的线性序列之间关系的法则。基因是DNA分子。DNA分子由4种核苷酸(A,T,G,C)排列组成。不同的基因所携带的不同的遗传信息,编码在不同的核苷酸序列中。遗传信息要翻译成另一种语言即蛋白质的氨基酸序列,才能实现其生物学功能。可是,DNA并不是直接把遗传信息传递给蛋白质,而是先转录成mRNA,然后以mRNA为中介来决定蛋白质中的氨基酸序列。一个线性mRNA分子的核苷酸序列,决定一个线性的蛋白质分子的氨基酸序列。mRNA同DNA一样,也是由4种核苷酸组成,所不同的只是mRNA用U代替了T,即A,U,G,C4种核苷酸。蛋白质由20种氨基酸组成。mRNA分子中的核苷酸以三个为一组,如AAA,AUA,AUG……构成了一个密码子;一个密码子决定一种氨基酸。mRNA的4种核苷酸组成的密码子可以有43=64种。64种密码子决定20种氨基酸。因此密码子是冗余的或简并的,即一种氨基酸可以有不止一个密码子。比如编码甘氨酸的密码子就有4个:GGU,GGC,GGA和GGG,编码精氨基酸的密码子则有6个:CGU,CGC,CGA,CGG,AGA和AGG。不同的基因有不同的核苷酸序列,决定不同的氨基酸序列,产生不同的蛋白质,行使不同的生物学功能,最后使生物体出现不同的性状。这种遗传密码是在20世纪60年代早期破译的。基因库 gene pool有性生殖生物的一个群体中,能进行生殖的个体所携带的全部基因,或全部遗传信息,或者是一个群体中所有个体的基因型的汇总。对二倍体生物而言,有N个个体的一个群体的基因库,由2N个单倍体基因组所组成。基因文库 gene library一个生物体的基因组DNA用限制性内切酶部分酶切后,将酶切片段克隆在载体DNA分子中,所有这些插入了基因组DNA片段的载体分子的集合体,将包含了这个生物体的整个基因组,也就是构成了这个生物体的基因文库。基因型分型 genotyping这是确定一条染色体上一些基因,DNA序列或遗传标记的连锁组合,实际上就是确定一条染色体上某个区段的单体型(haplotype)。现在有的译为基因分型是不够确切的,因为分型的不止有基因,而主要是遗传标记。共线性 synteny一个物种的基因组中相互连锁的基因,在另一物种的基因组中也是连锁关系,而且在两个物种的遗传图上的位置也是相似的。例如,人和小鼠之间就有一百多个共线区。在进化过程中一些基因始终保持着连锁关系,这意味着这种连锁可能在一定条件下具有选择上的某种优势。这对研究基因功能之间的相互关系提供了有用的线索。种间同源基因 ortholog不同物种中起源于一个共同的祖先基因的一些同源基因。这些基因通常保持着相同的或相似的功能。种内同源基因 paralog在进化过程中的一个基因通过重复而生成许多个基因,这些基因逐步分化成为不同的基因,这些不同的基因称为种内同源基因。例如,在脊椎动物进化过程中,祖先珠蛋白基因位置重复而后逐步分化成α珠蛋白基因、β珠蛋白基因和肌球蛋白基因等。混编 shufflingShuffling的原意是扑克牌的洗牌,54张牌在洗牌后可以有无数种的排列组合。在新基因的生成和基因进化研究中,借用shuffling这个词,提出了“外显子混编(exon shuffling)”和“结构域混编(domain shuffling)”等假说。即新的基因是由原来的基因打断后的断片混编而成的,或者是由编码蛋白质结构域的基因片段混编而成。这种基因片段可能就是外显子,因此称为外显子混编。表观遗传学 epigenetics研究基因的核苷酸序列不发生改变的情况下,基因表达出现了可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化,基因组印记(genomic imprinting)和RNA编辑(RNA editing)等。朊粒 prion蛋白质性质的感染颗粒的简称。(我注意到对这个译名有不同的意见,已提出的有“朊病毒”,“感染朊”或干脆音译为“普立昂”。朊病毒有点牵强附会,prion并不具有病毒的特征。感染朊是可以考虑的,但不如朊粒简明。)酶性核酸 ribozyme具有酶一样催化活性的核酸分子,有的译为“核酶”似不大贴切。* 赵寿元教授是全国科学技术名词审定委员会第四届委员会委员;遗传学名词审定委员会主任(第二届)。(注:“小词典”栏中的词目并不都是经审定过的规范词。)  相似文献   

3.
基因是遗传信息的载体,是实现一定遗传功能的基本单位,是有一定物质结构的实体。认识基因的本质,始终是贯串在遗传学研究中的一条主线。除少数生物的基因是RNA分子外,绝大多数生物的基因是DNA分子。DNA有少量存在于细胞质里的细胞器中,绝大部分在染色体中,真核细胞的染色体都在细胞核里。基因、  相似文献   

4.
<正>基因(遗传因子)是遗传的物质基础,是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因通过复制把遗传信息传递给下一代,使后代出现与亲代相似的性状。人类大约有几万个基因,储存着生  相似文献   

5.
6.
<正>生物种质资源的收集和利用将进一步加速,系统生物学将为大规模基因资源发掘和利用提供系统的理论与技术基础,通过基因型分析,综合应用细胞工程、染色体工程、分子标记辅助选择、基因克隆与转基因等技术成为高效种质创新的主体思路。我们在分析未来农业科技发展趋势的基础上,从如下5个领域分别介绍其发展的新趋势新特点。  相似文献   

7.
《中国科技成果》2007,(9):57-57
国家863计划“中国大白菜DNA序列数据库构建和开发”课题(编号:2001AA231081),由北京农业生物技术研究中心主持,哈尔滨工业大学和北京农业信息技术研究中心参加。这一课题的目的就是启动我国重要的蔬菜作物——大白菜的分子水平研究,目标是为芸薹属作物种质创新提供新的基因资源。经过3年的研究,建立了我国首个大白菜DNA序列数据库,容量为11000序列,  相似文献   

8.
<正>美国科学家报告称,已揭示了细胞是如何修复双链断裂这样严重的DNA损伤。这种独特的修复机制,或将对基因突变等遗传学研究提供更多的解释。科学家们发现,当由于氧化、电离辐射、复制错误和某些代谢产物导致染色体的双链断裂时,细胞会利用遗传相似的染色体借助一种涉及断裂分子两端的机制来填补损伤部位。换句话说,为了修复遭受断裂损伤染色体,"绝望"的细胞会利用DNA复制机制中的一种独特结构来使细胞继续生存  相似文献   

9.
燕麦育种技术基础研究及新品种选育   总被引:1,自引:0,他引:1  
《中国科技成果》2014,(10):21-23
1燕麦遗传多样性分析技术研究 通过反复试验,建立了适合燕麦的AFLP反应体系。利用差异较大的部分材料,对大量AFLP引物进行了筛选,选出燕麦适用的AFLP引物20对,较好地反映燕麦材料的多态性,这些引物经进一步研究和筛选,将在燕麦分子辅助育种中发挥积极作用。  相似文献   

10.
连续突变readthrough mutation将终止密码子突变为一个有意义的密码子从而合成比正常翻译产物更长的肽链的突变。可读框open reading frame,ORF自起始密码子到终止密码子之间的核苷酸三联体序列。一般情况下,可读框即指某个基因的编码序列。阅读框reading frame以核苷酸三联体方式读取核酸序列的翻译信息。遗传指纹genetic fingerprint每个个体基因组所特有的遗传标记构成的图谱。遗传信息genetic information储存在DNA或RNA分子中的指导细胞内所有独特活动的指令的总和。基因gene遗传信息的基本单位。一般指位于染色体上编码一个特定功…  相似文献   

11.
刘庆忠 《中国科技成果》2009,10(18):25-25,30
该课题是执行山东省果树研究所与澳大利亚项目合作协议,完善早熟优质大果甜樱桃分子育种技术体系,利用两国优异种质中有价值的基因,提高早熟优质丰产大果型甜樱桃品种选育效率,促进甜樱桃生产向优质、高效、环境友好型方向发展。本课题的研究内容包括:种质评价技术的研究;分子标记技术体系的建立;核心种质DNA指纹库的构建及其S基因型鉴定;  相似文献   

12.
基因组编码的遗传信息是生命活动的基础,生物体进化出多套DNA损伤应答通路维持基因组稳定性。而"祸兮福之所倚",特定体细胞基因组的程序性异变又能赋予这些细胞新功能。获得性免疫系统中受体基因多样化是免疫细胞识别各类病原体的分子基础。在免疫T和B细胞发育中,重排酶RAG及脱氨酶AID在受体基因簇起始DNA损伤,这些程序性DNA损伤被易错修复解读为多样化的序列,最终造成受体分子多样化。免疫细胞受体基因多样化过程中,DNA损伤应答蛋白质机器维持基因组稳定性的分子机制是目前的研究热点也是相关免疫疾病诊疗的迫切需求。本项目将聚焦于免疫受体基因簇上程序性DNA损伤的应答通路抉择、空间调控机制以及淋巴瘤发生中基因组不稳定性产生的病理机制,发展癌症基因组染色体易位测序方法,探索在体外培养细胞中重现B细胞受体即抗体多样化的新技术。  相似文献   

13.
DNA分子双螺旋结构的发现是在多个学科突破的基础上形成的,其中包括物理学家应用X射线晶体衍射技术在研究生物大分子研究方面所取得的长足发展,遗传学家通过研究发现和证实了染色体中决定遗传的主要物质是DNA,而不是蛋白质等等。此外,DNA双螺旋结构的发现还与4位科学家的  相似文献   

14.
作物种质资源是控制作物性状的基因载体,是作物育种及其相关学科的生命物质基础.如何从丰富的种质资源中快速、准确地鉴定出育种上迫切需要的新的优异基因,是我国作物育种的急需与作物种质资源迫切需要解决的一个重要科学问题.我国农业上的第二次"绿色革命"应以培育"少投入、多产出、保护环境"的新品种为突破口.因此本项目以发掘抗旱、抗病(虫)、肥料高效利用及优质基因为研究重点.我们将植物基因组学的原理和方法应用于基因资源研究,提出了核心种质构建→重要新基因发掘→基因克隆的技术路线.项目近两年取得如下进展(1)明确了建立核心种质的策略与方法,建立起了水稻、小麦、大豆初级核心种质.(2)明确了新基因发掘的方法,构建了一批基因作图群体.(3)已克隆到水稻抗白叶枯病候选基因.  相似文献   

15.
文章拟应用引物原位标记(primed in situlabeling,PRINS)技术快速检测人类染色体非整倍性。首先进行PRINS技术对人类外周血淋巴细胞和精子核的标记研究以及多色PRINS技术的系统研究,采用更新的非ddNTP阻断的多色PRINS技术,对人类外周血淋巴细胞、精子和羊水细胞等多种样本进行标记;然后对不同靶标序列的标记效率及不同荧光色素的发光特点通过实验进行评估,获得关于PRINS技术的多项反应原理参数,并筛选标记顺序以获得均一稳定的标记效果,最后进行临床FISH探针与PR,INS的标记比较实验。通过实验,比较PRINS技术与传统FISH技术之间的标记特点与差别,评估PRINS的实际应用效果。笔者成功地在2.5h内标记了同一精子核内的多条染色体,单色以上标记达到99%。与FISH技术相比,PRINS的这些优点使它成为诊断染色体非整倍性变异的很好技术。  相似文献   

16.
我国是世界大豆主要消费国,近年来的年消费量超过7000万吨。但是,我国消费大豆约80%依赖于进口,造成我国大豆种植面积严重萎缩,危及我国食品安全及土壤可持续生产能力的保持。所以,大豆是我国最需发展的作物,也是发展潜力极大的作物。发展大豆生产,品种是基础,而品种的培育则取决于种质资源的创新和育种技术的发展。因此,本项目开展大豆分子育种技术和高产、优质、抗病新品种选育研究,把RNA干扰技术应用于大豆蛋白质改良,建立大豆品质快速改良的新途径;分离和克隆大豆品质、抗性相关功能基因,为大豆分子育种提供选择依据;利用分子育种技术和常规育种技术聚合高产、优质、抗病基因,创制高产、优质、抗病大豆新种质,培育高产、优质、抗病的大豆新品种并示范推广。项目从2004年开始实施,取得了多项研究成果。  相似文献   

17.
生命的多样性被进化论归因为随机突变,然而引起变异的根本原因在于条件因素的改变。除了外部的环境,机体还积极创造着自己的内环境;躯体的疾患,与其说来自细胞结构的异常,不如说源于体内生境平衡或稳定性的丧失。在微观层面,那些能与其它基因所提供的遗传气候相协调的基因得到了进化的偏爱。后天外在环境造成的经验影响可以在不更改DNA序列的情况下,通过表观遗传对基因进行修饰使其表达发生转变,从而在代际间继承。可遗传的环境印记挑战了生物学的中心法则,无论哪些特定的基因被激活,表观遗传效应都被环境所诱发,基因的作用更多地缘于生物体对环境刺激的回应。  相似文献   

18.
棉花纤维品质功能基因组学研究与分子改良研究进展   总被引:3,自引:0,他引:3  
本项目基于基因组学、功能基因组学、蛋白质组学和生物信息学等多学科交叉研究了棉花纤维品质发育的分子机制:利用辐射诱变、杂交、回交、系谱选择等技术培育、挖掘出优异纤维资源384份;利用徐州142棉纤维无长绒、无短绒突变体筛选出纤维伸长相关基因;用体外培养方法验证了乙烯、油菜素(BR)的生物合成途径及部分次生物质在纤维生长过程中的作用;构建了海岛棉品种Pi-ma90-53和陆地棉7235的BAC文库;利用蛋白质组学研究了棉纤维发育过程中的一些重要蛋白质的变化,构建了棉纤维细胞蛋白质表达谱;利用抑制扣除杂交方法、基因芯片技术或从纤维cDNA文库中筛选等共获得棉纤维发育相关基因199个,并用模式系统和棉花对基因的功能进行了分析和验证;建立了高效农杆菌介导、花粉管通道、基因枪轰击3种规模化的快速基因功能验证技术体系;开发了新标记,构建了陆海、陆陆高密度分子标记遗传连锁图谱,并选择有用分子标记和生化辅助育种相结合,初步建立了棉花纤维品质分子改良育种体系。  相似文献   

19.
基于基因组中不仅存在着现在能够编码的基因,而且存在着大量非编码DNA序列的事实,作者认为:一个基因组中的基因和非编码DNA序列共同保留着该物种所经历的进化事件、外在环境的变迁和内在结构与功能的演变的信息。发明出适当的科学方法,就可以将这些信息逐步破译出来,从而创建一门不同于化石考古学和古分子考古学的基因组考古学新学科。  相似文献   

20.
DNA序列中蕴含了控制人类生命活动的种种信息,决定了肤色、身高、体重等生物学性状,也对人类疾病与健康有着至关重要的影响。目前广泛威胁我国人民生命健康的常见重大疾病,如癌症、糖尿病、心脑血管疾病等都具有特定的遗传基础。由于进化历史、生活习俗等种种原因,中国人具有自己独特的遗传背景,在疾病易感性和药物反应方面与其他族群存在显著差异,导致许多对白种人群有效的基因诊断、药物等医学研究成果不能够应用于中国乃至亚洲人群。“炎黄1号”作为中国人参照基因组序列,从基因组学上对这些差异做出了解释,揭示了中国人自主的基因组研究与中国人的医学健康事业发展的重要关联性和必要性,对中国的基因科学研究和产业发展具有重要的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号