首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 1 毫秒
1.
 膜电极是多相物质传输和电化学反应场所,决定着燃料电池的性能、寿命及成本。本文分析膜电极当前技术现状与商业化目标,梳理膜电极分类及经过梯度化膜电极向有序化膜电极发展的技术脉络,介绍近年来超低Pt载量的第三代膜电极-有序化膜电极的新进展,比较各种有序化膜电极制备方法的优缺点。目前有序化膜电极在铂族元素总载量为0.118 mg/cm2下取得的最好性能为861 mW/cm2@0.692 V,0.137 g/kW,成本降至5美元/kW,Q/ΔT值从2013年的1.9下降到1.45。从降低Pt用量及简化燃料电池发电系统、降低系统成本的角度看,自增湿有序化膜电极是未来膜电极开发的重要方向。  相似文献   

2.
Charge transport processes involving the proton migration and electron transfer for different parts of membrane electrode assemble (MEA) play an essential role for developing the novel electrode and enhancing the electrochemical performance towards proton exchange membrane fuel cells (PEMFCs). However, the coupled charge transport processes make it difficult for evaluating proton conductivity and electronic conductivity of different parts in MEAs under operation conditions of fuel cells. Here in this work, we propose an experiment approach for separating the electronic conductivity and proton conductivity of different components of MEA at the operating conditions of PEMFCs. This approach involves two different measuring devices, which both consist of electron or proton conducting layers, sealing layers and sample layer, followed by tailoring the thickness of sample layers and via electrochemical impedance spectroscopy (EIS) to quantity the electronic conductivity and proton conductivity of different layers. These experiment results show the great potential in the development of different components of MEA.  相似文献   

3.
利用恒电位法、循环伏安法和双电位阶跃法在聚苯胺修饰Pt电极上沉积Pt微粒,并用其制备了甲醇阳极氧化的催化电极.研究结果表明,此种电极对甲醇氧化具有很好的电催化活性,并有协同催化作用.对不同Pt微粒电化学沉积方式所得电极的电催化活性进行了比较.在其它条件都相同的情况下,恒电位法沉积Pt微粒所得复合电极的电催化活性最好,双电位阶跃法沉积Pt微粒所得复合电极的电催化活性最差.同时,沉积方式相同时,不同沉积条件对所得复合电极的电催化活性有一定影响.在所研究的范围内,恒电位-0.25 V,循环电位-0.25~0.65 V以及双电位阶跃在-0.25 V持续时间为100 s时所得电极的催化活性优于其它条件下所得复合电极的电催化活性.  相似文献   

4.
Finite resources of the world''s fossil fuel give rise to the irresistible urge to explore alternative renewable energy routes such as microbial fuel cells (MFCs). The limited productivity is one of the main obstacles for MFC scalability. In this study, a dual-chamber MFC was assembled and equipped with fabricated modified cathodes with titanium dioxide (TiO2) or hybrid graphene (HG) which mainly improved the catalytic activity of the cathode. The graphite paste (GP) bare electrode was modified by both nanomaterials using a green and facile technique. The results showed that the modified cathodes resulted in a considerable improvement for the MFC performance, i.e., the power density reaching levels of 80 mW/m2 for GP-TiO2 and 220 mW/m2 for GP-HG compared to 30 mW/m2 for GP electrode. Additionally, the modified electrodes exhibited lower charge transfer resistance (Rct) compared to the bare electrode. Therefore, these modified electrodes, fabricated by an eco-friendly method, could be used as alternatives to the precious expensive metals like Pt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号