首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to realize hydrogen generation under visible light, novel CdS/TiO2 nanotubes arrays are developed by electrochemical anodizaUon of Ti in 0.15 mol/L NHTF + 0.08 mol/L H2C2O4 electrolyte. The diameter of the nanotube is 80-100 nm and the length is approximately 550 nm. The CdS nano-particles are deposited on the TiO2 nanotubes arrays by chemical bath deposition (CBD) in the ammonia-thiourea system. A 300 W Xe lamp is used as the light source, CdS/TiO2 nanotube arrays are used as the photoanode with the application of 1.0 V bath voltage, and 0.1 mol/L Na2S + 0.04 mol/L Na2SO3 solution is used as the electrolyte, then the rate of photoelectrocatalytic hydrogen generation is 245.4 μL/(h·cm^2). This opens new perspectives for photoelectrocatalytic hydrogen generation by using CdS/TiO2 nanotubes arrays.  相似文献   

2.
Saturated red polymer light-emitting diodes have been fabricated with a single emitting polymer blend layer of poly[2-(2-ethylhexyloxy)-5-methoxy-1,4-phenylenevinylene] (MEH-PPV) and poly[9,9-dioc- tylfluorene-co-4,7-di-2-thienyl-2,1,3-benzothiadiazole] (PFO-DBT15). Saturated red emission with the Commission Internationale de l’Eclairage (CIE) coordinates of (0.67, 0.33) was obtained. The device stability was investigated. The results showed that energy transfer occurred from MEH-PPV to PFO-DBT15, and MEH-PPV improved the hole injection and transportation.  相似文献   

3.
Zn-doped titanium oxide (TiO2) nanotubes electrode was prepared on a titanium plate by direct anodic oxidation and immersing method in sequence. Field emission scanning electron microscopy (FESEM) showed that the Zn-doped TiO2 nanotubes were well aligned and organized into high density uniform arrays with diameter ranging from 50 to 90 nm. The length and the thickness were about 200 and 15 nm respectively. TiO2 anatase phase was identified by X-ray diffraction (XRD). X-ray photoelectronspectroscopy (XPS) indicated that Zn ions were mainly located on the surface of TiO2 nanotubes in form of ZnO clusters. Compared with TiO2 nanotubes electrode, about 20 nm red shift in the spectrum of UV-vis absorption was observed. The degradation of pentachlorophenol (PCP) in aqueous solution under the same condition (initial concentration of PCP: 20 mg/L; concentration of Na2SO4:0.01 mol/L and pH: 7.03) was carried out using Zn-doped TiO2 nanotubes electrode and TiO2 nanotubes electrode. The degradation rates of PCP using Zn-doped TiO2 nanotubes electrode were found to be twice and 5.8 times as high as that using TiO2 nanotubes electrode by UV radiation (400 μw/cm^2) and visible light radiation (4500 μw/cm^2), respectively. 73.5% of PCP was removed using Zn-doped TiO2 nanotubes electrode against 45.5% removed using TiO2 nanotubes electrode in 120 min under UV radiation. While under visible light radiation, the degradation efficiency of PCP was 18.4% using Zn-doped TiO2 nanotubes electrode against 3.2% using TiO2 nanotubes electrode in 120 min. The optimum concentration of Zn doping was found to be 0.909%. The PCP degradation efficiencies of the 10 repeated experiments by Zn-doped TiO2 nanotubes electrode were rather stable with the deviation within 3.0%.  相似文献   

4.
A new kind of polythiophene derivative, Poly(3-{2-[4-(2-ethylhexyloxy)-phenyl]-vinyl}-2,2′-bithiophene) (PTh), was applied in dye-sensitized solar cell to extend the light response of nanocrystalline TiO2 electrode. UV-vis absorption and fluorescence spectra were employed to investigate the interaction of PTh with nanocrystalline TiO2. The absorption coefficient of the PTh was high in visible part of spec- trum, and the fluorescence emission of the PTh can be efficiently quenched by TiO2 nanoparticles ow- i...  相似文献   

5.
Pure anatase TiO2 films have been made via hydration of titanium isopropoxide using a sol-gel tech-nique, while mixed TiO2 films which contained both anatase and rutile TiO2 were made from commercial P25 powder. Quasi-solid state dye-sensitized solar cells were fabricated with these two kinds of mesoporous films and a comparison study was carried out. The result showed that the open-circuit photovoltages (Voc) for both kinds of cells were essentially the same, whereas the short-circuit photo-currents (1sc) of the anatase-based cells were about 33% higher than that of the P25-based cells. The highest photocurrent intensity of the anatase-based cell was 6.12 mA/cm^2 and that of the P25-based cell was 4.60 mA/cm^2. Under an illumination with the light intensity of 30 mW/cm^2, the corresponding energy conversion efficiency was measured to be 7.07% and 6.89% for anatase-based cells and P25-based cells, respectively.  相似文献   

6.
In the 1910s, TiO2 began to be used in building materials as pigments and opacifier due to its excellent optical property. Since the photocatalytic property of TiO2 was observed in 1972, its application field was expanded to air cleaning and sterilization. Thereafter, people added TiO2 into building materials to develop novel and facile building materials. These materials were widely used for air cleaning, sterilization, self-cleaning, anti-fogging, decoration, and building cooling. The combination of building and other functions can serve simultaneously. Although TiO2-based building materials have bright prospects, some aspects such as improving the stability and enhancing photoactive performance of the materials are of importance for future research. Supported by the National High Technology Research and Development Program (“863” Program) of China (Grant No. 2007AA061402), Chinese Key Technology Research and Development Program of the Eleventh Five-year Plan (Grant No. 2006BAJ02A08), Hangzhou Science & Technology Development Program (Grant No. 20061133B27) and Research Fund for the Doctoral Program of Higher Education (Grant No. 20070335197)  相似文献   

7.
Chemical fixing of xanthene dye (eosin Y) on the surface of TiO2 electrode was carried out by modifying the electrode with silane-coupling reagent to obtain stable dye-sensitized TiO2 electrode. Such silane modification can not only evidently enhance the stability of dye-sensitized TiO2 electrode but also improve the energy conversion efficiency of the assembled cells by increasing short-circuit photocurrent (Jsc) and open-circuit photovoltage (Voc). It was found that the improvements of cell performances differ depending on the composition of the electrolyte. The optimum cell of the cell performance was achieved in the electrolyte with 0.5 mol/L TBAI/0.05 mol/L 12/EC:PC(3:1 w/w), yielding Jsc of 4.69 mA. cm-2, Voc of 0,595 V, fill factor (FF) of 0.64 and ηof 1,78%, Different spectroscopic techniques including UV-Vis spectra, fluorescence spectra, EIS and dark current measurements were employed to derive reasonable analysis and explanations.  相似文献   

8.
Fabrication and S-F-codoping of TiO2 nanotubes were carried out by a one-step electrochemical anodization process to extend the photoresponse of TiO2 to the visible-light region. The prepared samples were annealed in air and detected by SEM, XRD, XPS and UV-vis DRS spectrophotometer. The results showed that the average tube diameter of the nanotubes was 150 nm and the average tube length was 400 nm. The doped TiO2 nanotubes exhibited strong absorption in visible-light region. Photoelectrocatalytic degradation efficiency of 4-CP over S-F-codoped TiO2 nanotubes was 39.7% higher than that of only-F-doped sample. Moreover, sulfur and fluorine codoped into substitutional sites of TiO2 had been proven to be indispensable for strong response and high photocatalytic activity under visible light, as assessed by XPS.  相似文献   

9.
The anatase nano-TiO2 powder, with crystal size between 40 and 80 nm, was prepared by the liquid phase hydrolysis of TiCI4. At the same time, the nano-TiO2 was utilized with the baker's yeast biomass as a composite adsorbent to adsorb the Cu ions in the artificial aqueous solution. The investigation showed that the composite adsorbent had a fine adsorption efficiency. The TiO2 in the composite adsorbent could cooperate well with baker's yeast to improve the adsorbing capability of Cu^2+ under the following experimental conditions as well: a quantity of composite adsorbent of 5 g·L^-1, pH≥4.0, an adsorption time of 40 min and an initial concentration of Cu ions of 10 mg·L^-1. In addition, the results of measurements, obtained with a scanning electron microscope, an infrared spectrophotometer and a Zeta potential analyzer, revealed that the baker's yeast and nano-TiO2 produced the composite adsorbent through coordination and hydrogen bonds in particular, etc. The stability of the composite adsorbent and the amount of titania loaded were largely dependent on the concentration of hydrogen ion in the solution.  相似文献   

10.
The compression behavior of Ni77P23 amorphous alloy is investigated at room temperature in a diamond-anvil cell instrument using insitu high pressure energy dispersive X-ray diffraction with a syn- chrotron radiation source. The equation of state is determined by fitting the experimental data accord- ing to Birch-Murnaghan equation: -ΔV/V0=0.08606P-3.2×10-4P2 5.7×10-6P3. It is found that the structure of Ni77P23 amorphous alloy is stable under pressures up to 30.5 GPa.  相似文献   

11.
Multiferroic BiFeO3 (BFO) nanotube arrays (∼100 nm in diameter and ∼50 μm in length) were synthesized by the sol-gel method utilizing the anodic aluminum oxide (AAO) membrane technique. The microstructure and chemical components of the BFO nanotubes were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectrometer (XPS). The BFO nanotubes exhibited polycrystalline microstructures. The novel Y-junction BFO nanotubes were simultaneously fabricated. Supported by the National Natural Science Foundation of China (Grant No. 90306010), Program for New Century Excellent Talents in University (Grant No. NCET-04-0653) and National Basic Research Program of China (Grant No. 2007CB616911)  相似文献   

12.
The uptake of ethyl iodide on black carbon surface   总被引:1,自引:0,他引:1  
The importance of the iodine chemistry in the atmosphere has been demonstrated by recent obserations. The uptake of ethyl iodine on black carbon surface was inestigated at 298 K for the first time. Degussa FW2 (an amorphous black carbon comprising medium oxides) was used as black carbon sample. Black carbon surface was found to be deactiated in reaction with C2H51, and the uptake coefficient (r) was dependent on the time of exposure. The alue of (2.3±0.9)×10^-2 was determined for the initial uptake coefficient (No). The result suggests that the heterogeneous loss of C2H51 on carbonaceous aerosols may be important under the atmospheric conditions.  相似文献   

13.
Using a spatially symmetric phenyldithiolate molecule sandwiched between two gold electrodes as model system and through shifting one electrode from symmetric contact site to form asymmetric contact, we investigated the properties of electronic transport in such a device by the first-principles. It was found that the/(G )-V characteristics of a device show significant asymmetry and the magnitudes of current and conductance depend remarkably on the variation of molecule-metal distance at one of the two contacts. Namely, an asymmetric contact would lead to the weak rectifying effects on the current-voltage characteristics of a molecular device. The analysis shows that the HOMO is responsible for the resonant tunneling and its shift due to the charging of the device while the bias voltage is the intrinsic origin of asymmetric/(G)- Vcharacteristics.  相似文献   

14.
Co-substituted α-Ni(OH)2 was synthesized by a novel microwave homogeneous precipitation method in the presence of urea. LiNi0.8Co0.2O2 cathode material was synthesized by calcining Co-substituted α-Ni(OH)2 precursor and LiOH·H2O at 900℃for 10 h in flowing oxygen. XRD, FTIR, FESEM and electrochemical tests were used to study the physical and the electrochemical performances of the materials. The results show that the prepared LiNi0.8Co0.2O2 compound has a good layered hexagonal structure. Moreover, the LiNi0.8Co0.2O2cathode material demonstrates stable cyclability with a high initial specific discharge capacity of 183.9 mAh/g. The good electrochemical performance could be attributed to the uniform distribution of Ni^2+ and Co^2+ ions in the crystal structure and a minimal cation mixing in LiNi0.8Co0.2O2 host structure.  相似文献   

15.
A novel material MnO2 nanosheet has been used as the support matrix for the immobilization of horseradish peroxidase (HRP). HRP entrapped in MnO2 nanosheet film exhibits facile direct electron transfer with the electron transfer rate constant of 6.86 s^-1. The HRP/MnO2 nanosheet film gives a reversible redox couple with the apparent formal peak potential (E^0') of -0.315 V (vs. Ag/AgCl) in pH 6.5 phosphate buffer solution (PBS). The formal potential E^0' of HRP shifts linearly with pH with a slope of -53.75 mV.pH^-1, denoting that an electron transfer accompanies single-proton transportation. The immobilized HRP shows an electrocatslytic activity to the reduction of H2O2. The response time of the biosensor for H2O2 is less than 3 s, and the detection limit is 0.21 μmol · L^-1 based on signal/noise = 3.  相似文献   

16.
Degenerate four-wave mixing measurements, using the 35 ps pulses at 532 nm, have been employed to investigate the third-order nonlinear optical parameters of two chromium tricarbonyl complexes η6-bonded to 3-amino-9-ethylcarbazole at either the NH2-substituted aryl ring (1) or the unsubstituted ring (2) and their precursor 3-amino-9-ethylcarbazole (AECz). The second-order hyperpolarizability y of the compounds 1 and 2 were found to be 42.9×10^-31 and 35.9×10^-31 esu, respectively, approximately one order of magnitude greater than AECz. The relation between the molecular structure and second-order hyperpolarizability of the compounds I and 2 was explored in detail based on the three-level model and the density functional theory (DFT) calculation. The theoretical results indicate that the spatial distribution of electron density has the profound role in the third-order nonlinear optical properties.  相似文献   

17.
Pyrene was chemically assembled on a glass plate surface in a monolayer manner via spacers containing triethylenetetramine (TETA) subunits. It has been demonstrated that the fluorescence emission of the film is sensitive to the presence of trace amount of nitroaromatic compound (NAC) vapors. As discovered in the present work, the response selectivity of the pyrene-functionalized film depends on the length of the spacer, the vapor pressure of a given NAC, and the quencher size. The film shows faster response to those quenchers which have higher vapor pressure and smaller size. Compared to the film with shorter spacers, the present film with longer flexible spacers shows a slower response to the NACs, but higher selectivity to the quencher size. Additionally, the detection limits to common ex- plosives in vapor phase, 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT), are 7.14×10^-12 and 5.49×10^-11 g·mL^-1, respectively. Further examinations indicated that the sensing process is fully reversible, and the vapors of those common interference such as benzene, toluene, ethanol, and perfume have little effect upon the sensing performances of the film.  相似文献   

18.
Three-dimensionally ordered macroporous polystyrene (3DOM PS) with pore size of 350 nm was fab- ricated using Cp2Co/Ethyl 2-bromoisobutyrate (EBiB) catalytic system by ATRP. The resulting polymers were detected by FT-IR, 1H-NMR, SEM, and GPC. The microstructure of 3DOM PS was confirmed by FT-IR and 1H-NMR. SEM micrographs show that both silica spheres within the templates and pores in the 3DOM polystyrene are arranged in highly ordered fashion, and the shrinkage of the pores in the 3DOM PS is 24%. GPC curves show that the 3DOM PS possesses slightly lower Mn and narrow MWD compared with bulk one. This result indicats that living polymerization is different from non-living polymerizationin in the confined space.  相似文献   

19.
A multiparameter investigation of surface sediments from the Bei'anhe section (Beijing) has been conducted using environmental magnetic approaches. The studied sedimentary sequence consists of pluvial and lacustrine silts and clay of the Holocene age. Magnetite, hematite and pyrrhotite were identiffed as the dominant magnetic minerals. The mineral magnetic characteristics are considered to reflect the Holocene paleoenvironmental processes of the studied area, which are different from the mineral magnetic properties of typical polluted sections reported in the Beijing area. The low-field magnetic susceptibility and saturated isothermal remanence magnetization of the section decrease gradually with increasing depth. This indicates that the concentration of magnetic minerals in the strata decreases down the section. Values of interparametric ratios, such as ARM/SIRM, XARM/Xand SIRM/X, gradually increase with increasing depth, which indicates a down-section decreasing trend in the magnetic grain size of the sediments. Pyrrhotite occurs below the depth of 22 cm, suggesting the existence of redox interface. The magnetic variations of the Bei'anhe surface sediments might be controlled by two geological processes: reductive diagenesis and pedogenesis. Our findings may have provided a reference point for magnetic investigation of polluted surface sediments in the Beijing area.  相似文献   

20.
A novel Pd/silicalite-1 composite membrane supported on the macroporous tubular stainless steel substrate was successfully fabricated by electroless plating at 303 K. The structure, morphology and gaseous permeability of the membrane were detected by X-ray diffractiometry (XRD), scanning electron microscopy (SEM) and single-gas permeation test, respectively. Results confirm the formation of a thin, smooth, and continuous Pd/silicalite-1 composite membrane. The obtained composite membrane shows a high H2 permeance of 1.15×10^-6 mol. m^-2. s^-1. Pa^-1 with moderate H2 selectivity of 250 for H2/N2 at 773 K, at 0.1 MPa pressure drop, suggesting the potential application for H2 separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号