首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huntington's disease is an autosomal-dominant progressive neurodegenerative disorder resulting in specific neuronal loss and dysfunction in the striatum and cortex. The disease is universally fatal, with a mean survival following onset of 15-20 years and, at present, there is no effective treatment. The mutation in patients with Huntington's disease is an expanded CAG/polyglutamine repeat in huntingtin, a protein of unknown function with a relative molecular mass of 350,000 (M(r) 350K). The length of the CAG/polyglutamine repeat is inversely correlated with the age of disease onset. The molecular pathways mediating the neuropathology of Huntington's disease are poorly understood. Transgenic mice expressing exon 1 of the human huntingtin gene with an expanded CAG/polyglutamine repeat develop a progressive syndrome with many of the characteristics of human Huntington's disease. Here we demonstrate evidence of caspase-1 activation in the brains of mice and humans with the disease. In this transgenic mouse model of Huntington's disease, expression of a dominant-negative caspase-1 mutant extends survival and delays the appearance of neuronal inclusions, neurotransmitter receptor alterations and onset of symptoms, indicating that caspase-1 is important in the pathogenesis of the disease. In addition, we demonstrate that intracerebroventricular administration of a caspase inhibitor delays disease progression and mortality in the mouse model of Huntington's disease.  相似文献   

2.
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by expansion of a glutamine-encoding repeat in ataxin 1 (ATXN1). In all known polyglutamine diseases, the glutamine expansion confers toxic functions onto the protein; however, the mechanism by which this occurs remains enigmatic, in light of the fact that the mutant protein apparently maintains interactions with its usual partners. Here we show that the expanded polyglutamine tract differentially affects the function of the host protein in the context of different endogenous protein complexes. Polyglutamine expansion in ATXN1 favours the formation of a particular protein complex containing RBM17, contributing to SCA1 neuropathology by means of a gain-of-function mechanism. Concomitantly, polyglutamine expansion attenuates the formation and function of another protein complex containing ATXN1 and capicua, contributing to SCA1 through a partial loss-of-function mechanism. This model provides mechanistic insight into the molecular pathogenesis of SCA1 as well as other polyglutamine diseases.  相似文献   

3.
Ciliary neurotrophic factor (CNTF) supports the survival of embryonic motor neurons in vitro and in vivo, and prevents lesion-mediated degeneration of rat motor neurons during early post-natal stages. Here we report that CNTF greatly reduces all the functional and morphological changes in pmn/pmn mice, an autosomal recessive mutant leading to progressive caudo-cranial motor neuron degeneration. The first manifestations of progressive motor neuronopathy in homozygous pmn/pmn mice become apparent in the hind limbs at the end of the third post-natal week, and all the mice die up to 6 or 7 weeks after birth from respiratory paralysis. Treatment with CNTF prolongs survival and greatly improves motor function of these mice. Moreover, morphological manifestations, such as loss of motor axons in the phrenic nerve and degeneration of facial motor neurons, were greatly reduced by CNTF, although the treatment did not start until the first symptoms of the disease had already become apparent and substantial degenerative changes were already present. The protective and restorative effects of CNTF in this mouse mutant give new perspectives for the treatment of human degenerative motor neuron diseases with CNTF.  相似文献   

4.
Tashiro A  Sandler VM  Toni N  Zhao C  Gage FH 《Nature》2006,442(7105):929-933
New neurons are continuously integrated into existing neural circuits in adult dentate gyrus of the mammalian brain. Accumulating evidence indicates that these new neurons are involved in learning and memory. A substantial fraction of newly born neurons die before they mature and the survival of new neurons is regulated in an experience-dependent manner, raising the possibility that the selective survival or death of new neurons has a direct role in a process of learning and memory--such as information storage--through the information-specific construction of new circuits. However, a critical assumption of this hypothesis is that the survival or death decision of new neurons is information-specific. Because neurons receive their information primarily through their input synaptic activity, we investigated whether the survival of new neurons is regulated by input activity in a cell-specific manner. Here we developed a retrovirus-mediated, single-cell gene knockout technique in mice and showed that the survival of new neurons is competitively regulated by their own NMDA-type glutamate receptor during a short, critical period soon after neuronal birth. This finding indicates that the survival of new neurons and the resulting formation of new circuits are regulated in an input-dependent, cell-specific manner. Therefore, the circuits formed by new neurons may represent information associated with input activity within a short time window in the critical period. This information-specific addition of new circuits through selective survival or death of new neurons may be a unique attribute of new neurons that enables them to play a critical role in learning and memory.  相似文献   

5.
6.
Q Yan  J Elliott  W D Snider 《Nature》1992,360(6406):753-755
Current ideas about the dependence of neurons on target-derived growth factors were formulated on the basis of experiments involving neurons with projections to the periphery. Nerve growth factor (NGF) and recently identified members of the NGF family of neuronal growth factors, known as neurotrophins, are thought to regulate survival of sympathetic and certain populations of sensory ganglion cells during development. Far less is known about factors that regulate the survival of spinal and cranial motor neurons, which also project to peripheral targets. NGF has not been shown to influence motor neuron survival, and whether the newly identified neurotrophins promote motor neuron survival is unknown. We show here that brain-derived neurotrophic factor (BDNF) is retrogradely transported by motor neurons in neonatal rats and that local application of BDNF to transected sciatic nerve prevents the massive death of motor neurons that normally follows axotomy in the neonatal period. These results show that BDNF has survival-promoting effects on motor neurons in vivo and suggest that BDNF may influence motor neuron survival during development.  相似文献   

7.
Machado-Joseph disease (MJD; also called spinocerebellar ataxia type 3) is a dominantly inherited late-onset neurodegenerative disorder caused by expansion of polyglutamine (polyQ)-encoding CAG repeats in the MJD1 gene (also known as ATXN3). Proteolytic liberation of highly aggregation-prone polyQ fragments from the protective sequence of the MJD1 gene product ataxin 3 (ATXN3) has been proposed to trigger the formation of ATXN3-containing aggregates, the neuropathological hallmark of MJD. ATXN3 fragments are detected in brain tissue of MJD patients and transgenic mice expressing mutant human ATXN3(Q71), and their amount increases with disease severity, supporting a relationship between ATXN3 processing and disease progression. The formation of early aggregation intermediates is thought to have a critical role in disease initiation, but the precise pathogenic mechanism operating in MJD has remained elusive. Here we show that L-glutamate-induced excitation of patient-specific induced pluripotent stem cell (iPSC)-derived neurons initiates Ca(2+)-dependent proteolysis of ATXN3 followed by the formation of SDS-insoluble aggregates. This phenotype could be abolished by calpain inhibition, confirming a key role of this protease in ATXN3 aggregation. Aggregate formation was further dependent on functional Na(+) and K(+) channels as well as ionotropic and voltage-gated Ca(2+) channels, and was not observed in iPSCs, fibroblasts or glia, thereby providing an explanation for the neuron-specific phenotype of this disease. Our data illustrate that iPSCs enable the study of aberrant protein processing associated with late-onset neurodegenerative disorders in patient-specific neurons.  相似文献   

8.
Neurogenesis in the adult is involved in the formation of trace memories   总被引:94,自引:0,他引:94  
Shors TJ  Miesegaes G  Beylin A  Zhao M  Rydel T  Gould E 《Nature》2001,410(6826):372-376
The vertebrate brain continues to produce new neurons throughout life. In the rat hippocampus, several thousand are produced each day, many of which die within weeks. Associative learning can enhance their survival; however, until now it was unknown whether new neurons are involved in memory formation. Here we show that a substantial reduction in the number of newly generated neurons in the adult rat impairs hippocampal-dependent trace conditioning, a task in which an animal must associate stimuli that are separated in time. A similar reduction did not affect learning when the same stimuli are not separated in time, a task that is hippocampal-independent. The reduction in neurogenesis did not induce death of mature hippocampal neurons or permanently alter neurophysiological properties of the CA1 region, such as long-term potentiation. Moreover, recovery of cell production was associated with the ability to acquire trace memories. These results indicate that newly generated neurons in the adult are not only affected by the formation of a hippocampal-dependent memory, but also participate in it.  相似文献   

9.
A Drosophila model of Parkinson's disease   总被引:73,自引:0,他引:73  
Feany MB  Bender WW 《Nature》2000,404(6776):394-398
Parkinson's disease is a common neurodegenerative syndrome characterized by loss of dopaminergic neurons in the substantia nigra, formation of filamentous intraneuronal inclusions (Lewy bodies) and an extrapyramidal movement disorder. Mutations in the alpha-synuclein gene are linked to familial Parkinson's disease and alpha-synuclein accumulates in Lewy bodies and Lewy neurites. Here we express normal and mutant forms of alpha-synuclein in Drosophila and produce adult-onset loss of dopaminergic neurons, filamentous intraneuronal inclusions containing alpha-synuclein and locomotor dysfunction. Our Drosophila model thus recapitulates the essential features of the human disorder, and makes possible a powerful genetic approach to Parkinson's disease.  相似文献   

10.
11.
针对锌合金压铸时射嘴身的早期失效问题,通过组织分析发现,射嘴身材料中存在着的大量夹杂物和网状碳化物的缺陷以及M300钢本身的高温回火脆性,是射嘴身失效的主要原因.压铸时高速高压的锌合金熔体会与M300钢发生化学反应,生成Fe-Zn相的腐蚀产物,在射嘴身内腔腐蚀出沟槽,而高速锌合金熔体的冲击应力又进一步诱发沟槽内裂纹的扩展,从而促使了早期失效行为的发生.  相似文献   

12.
A one-hit model of cell death in inherited neuronal degenerations   总被引:18,自引:0,他引:18  
In genetic disorders associated with premature neuronal death, symptoms may not appear for years or decades. This delay in clinical onset is often assumed to reflect the occurrence of age-dependent cumulative damage. For example, it has been suggested that oxidative stress disrupts metabolism in neurological degenerative disorders by the cumulative damage of essential macromolecules. A prediction of the cumulative damage hypothesis is that the probability of cell death will increase over time. Here we show in contrast that the kinetics of neuronal death in 12 models of photoreceptor degeneration, hippocampal neurons undergoing excitotoxic cell death, a mouse model of cerebellar degeneration and Parkinson's and Huntington's diseases are all exponential and better explained by mathematical models in which the risk of cell death remains constant or decreases exponentially with age. These kinetics argue against the cumulative damage hypothesis; instead, the time of death of any neuron is random. Our findings are most simply accommodated by a 'one-hit' biochemical model in which mutation imposes a mutant steady state on the neuron and a single event randomly initiates cell death. This model appears to be common to many forms of neurodegeneration and has implications for therapeutic strategies.  相似文献   

13.
Sánchez I  Mahlke C  Yuan J 《Nature》2003,421(6921):373-379
The expansion of a CAG repeat coding for polyglutamine in otherwise unrelated gene products is central to eight neurodegenerative disorders including Huntington's disease. It has been well documented that expanded polyglutamine fragments, cleaved from their respective full-length proteins, form microscopically visible aggregates in affected individuals and in transgenic mice. The contribution of polyglutamine oligomers to neurodegeneration, however, is controversial. The azo-dye Congo red binds preferentially to beta-sheets containing amyloid fibrils and can specifically inhibit oligomerization and disrupt preformed oligomers. Here we show that inhibition of polyglutamine oligomerization by Congo red prevents ATP depletion and caspase activation, preserves normal cellular protein synthesis and degradation functions, and promotes the clearance of expanded polyglutamine repeats in vivo and in vitro. Infusion of Congo red into a transgenic mouse model of Huntington's disease, well after the onset of symptoms, promotes the clearance of expanded repeats in vivo and exerts marked protective effects on survival, weight loss and motor function. We conclude that oligomerization is a crucial determinant in the biochemical properties of expanded polyglutamine that are central to their chronic cytotoxicity.  相似文献   

14.
Wes PD  Bargmann CI 《Nature》2001,410(6829):698-701
Caenorhabditis elegans senses at least five attractive odours with a single pair of olfactory neurons, AWC, but can distinguish among these odours in behavioural assays. The two AWC neurons are structurally and functionally similar, but the G-protein-coupled receptor STR-2 is randomly expressed in either the left or the right AWC neuron, never in both. Here we describe the isolation of a mutant, ky542, with specific defects in odour discrimination and odour chemotaxis. ky542 is an allele of nsy-1, a neuronal symmetry, or Nsy, mutant in which STR-2 is expressed in both AWC neurons. Other Nsy mutants exhibit discrimination and olfactory defects like those of nsy-1 mutants. Laser ablation of the AWC neuron that does not express STR-2 (AWCOFF) recapitulates the behavioural phenotype of Nsy mutants, whereas laser ablation of the STR-2-expressing AWC neuron (AWCON) causes different chemotaxis defects. We propose that odour discrimination can be achieved by segregating the detection of different odours into distinct olfactory neurons or into unique combinations of olfactory neurons.  相似文献   

15.
过程神经元网络是一种适合于处理过程式信号输入的网络,其基本单元是过程神经元——一种新的神经元模型.过程神经元和传统神经元既存在本质区别,又有着紧密的联系,前者可用后者以任意精度无限逼近.文中首先介绍了过程神经元及其网络模型;然后,给出了过程神经元的两个逼近定理及其证明——时域特征扩展模型和正交分解特征扩展模型.基于第二个定理,给出了数值输出型过程神经网络的相关推论.针对模拟信号的仿真实验表明,过程神经网络对白噪声具有很好的抑制作用.最后,针对过程神经网络面临的主要问题进行讨论,指出了一些具有前景的研究方向.  相似文献   

16.
Learning through trial-and-error interactions allows animals to adapt innate behavioural ‘rules of thumb’ to the local environment, improving their prospects for survival and reproduction. Naive Drosophila melanogaster males, for example, court both virgin and mated females, but learn through experience to selectively suppress futile courtship towards females that have already mated. Here we show that courtship learning reflects an enhanced response to the male pheromone cis-vaccenyl acetate (cVA), which is deposited on females during mating and thus distinguishes mated females from virgins. Dissociation experiments suggest a simple learning rule in which unsuccessful courtship enhances sensitivity to cVA. The learning experience can be mimicked by artificial activation of dopaminergic neurons, and we identify a specific class of dopaminergic neuron that is critical for courtship learning. These neurons provide input to the mushroom body (MB) γ lobe, and the DopR1 dopamine receptor is required in MBγ neurons for both natural and artificial courtship learning. Our work thus reveals critical behavioural, cellular and molecular components of the learning rule by which Drosophila adjusts its innate mating strategy according to experience.  相似文献   

17.
Brain-derived neurotrophic factor (BDNF), like other neurotrophins, is a polypeptidic factor initially regarded to be responsible for neuron proliferation, differentiation and survival, through its uptake at nerve terminals and retrograde transport to the cell body. A more diverse role for BDNF has emerged progressively from observations showing that it is also transported anterogradely, is released on neuron depolarization, and triggers rapid intracellular signals and action potentials in central neurons. Here we report that BDNF elicits long-term neuronal adaptations by controlling the responsiveness of its target neurons to the important neurotransmitter, dopamine. Using lesions and gene-targeted mice lacking BDNF, we show that BDNF from dopamine neurons is responsible for inducing normal expression of the dopamine D3 receptor in nucleus accumbens both during development and in adulthood. BDNF from corticostriatal neurons also induces behavioural sensitization, by triggering overexpression of the D3 receptor in striatum of hemiparkinsonian rats. Our results suggest that BDNF may be an important determinant of pathophysiological conditions such as drug addiction, schizophrenia or Parkinson's disease, in which D3 receptor expression is abnormal.  相似文献   

18.
Non-human primates are valuable for modelling human disorders and for developing therapeutic strategies; however, little work has been reported in establishing transgenic non-human primate models of human diseases. Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor impairment, cognitive deterioration and psychiatric disturbances followed by death within 10-15 years of the onset of the symptoms. HD is caused by the expansion of cytosine-adenine-guanine (CAG, translated into glutamine) trinucleotide repeats in the first exon of the human huntingtin (HTT) gene. Mutant HTT with expanded polyglutamine (polyQ) is widely expressed in the brain and peripheral tissues, but causes selective neurodegeneration that is most prominent in the striatum and cortex of the brain. Although rodent models of HD have been developed, these models do not satisfactorily parallel the brain changes and behavioural features observed in HD patients. Because of the close physiological, neurological and genetic similarities between humans and higher primates, monkeys can serve as very useful models for understanding human physiology and diseases. Here we report our progress in developing a transgenic model of HD in a rhesus macaque that expresses polyglutamine-expanded HTT. Hallmark features of HD, including nuclear inclusions and neuropil aggregates, were observed in the brains of the HD transgenic monkeys. Additionally, the transgenic monkeys showed important clinical features of HD, including dystonia and chorea. A transgenic HD monkey model may open the way to understanding the underlying biology of HD better, and to the development of potential therapies. Moreover, our data suggest that it will be feasible to generate valuable non-human primate models of HD and possibly other human genetic diseases.  相似文献   

19.
Protein quality-control, especially the removal of proteins with aberrant structures, has an important role in maintaining the homeostasis of non-dividing neural cells. In addition to the ubiquitin-proteasome system, emerging evidence points to the importance of autophagy--the bulk protein degradation pathway involved in starvation-induced and constitutive protein turnover--in the protein quality-control process. However, little is known about the precise roles of autophagy in neurons. Here we report that loss of Atg7 (autophagy-related 7), a gene essential for autophagy, leads to neurodegeneration. We found that mice lacking Atg7 specifically in the central nervous system showed behavioural defects, including abnormal limb-clasping reflexes and a reduction in coordinated movement, and died within 28 weeks of birth. Atg7 deficiency caused massive neuronal loss in the cerebral and cerebellar cortices. Notably, polyubiquitinated proteins accumulated in autophagy-deficient neurons as inclusion bodies, which increased in size and number with ageing. There was, however, no obvious alteration in proteasome function. Our results indicate that autophagy is essential for the survival of neural cells, and that impairment of autophagy is implicated in the pathogenesis of neurodegenerative disorders involving ubiquitin-containing inclusion bodies.  相似文献   

20.
K Arora  V Rodrigues  S Joshi  S Shanbhag  O Siddiqi 《Nature》1987,330(6143):62-63
The sensilla on the proboscis and tarsi of Drosophila contain five neurons, four chemosensory and one mechanosensory. The sugar-sensitive neuron, designated S, carries independent acceptor sites for pyranose, furanose and trehalose. Two others, L1 and L2, respond to salts. The fourth neuron, W, is inhibited by salts and sugars, and is believed to mediate detection of water. We describe here a gene in which mutations alter the neurons in such a way that the S cell is excited by salts. As a result, the mutant flies are strongly attracted by NaCl at concentrations which are repellent to the wild type. To our knowledge, this is the first instance of a mutation which changes the specificity of the chemosensory neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号