首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Stoleru D  Peng Y  Agosto J  Rosbash M 《Nature》2004,431(7010):862-868
Daily rhythms of physiology and behaviour are precisely timed by an endogenous circadian clock. These include separate bouts of morning and evening activity, characteristic of Drosophila melanogaster and many other taxa, including mammals. Whereas multiple oscillators have long been proposed to orchestrate such complex behavioural programmes, their nature and interplay have remained elusive. By using cell-specific ablation, we show that the timing of morning and evening activity in Drosophila derives from two distinct groups of circadian neurons: morning activity from the ventral lateral neurons that express the neuropeptide PDF, and evening activity from another group of cells, including the dorsal lateral neurons. Although the two oscillators can function autonomously, cell-specific rescue experiments with circadian clock mutants indicate that they are functionally coupled.  相似文献   

2.
Stoleru D  Peng Y  Nawathean P  Rosbash M 《Nature》2005,438(7065):238-242
The biochemical machinery that underlies circadian rhythms is conserved among animal species and drives self-sustained molecular oscillations and functions, even within individual asynchronous tissue-culture cells. Yet the rhythm-generating neural centres of higher eukaryotes are usually composed of interconnected cellular networks, which contribute to robustness and synchrony as well as other complex features of rhythmic behaviour. In mammals, little is known about how individual brain oscillators are organized to orchestrate a complex behavioural pattern. Drosophila is arguably more advanced from this point of view: we and others have recently shown that a group of adult brain clock neurons expresses the neuropeptide PDF and controls morning activity (small LN(v) cells; M-cells), whereas another group of clock neurons controls evening activity (CRY+, PDF- cells; E-cells). We have generated transgenic mosaic animals with different circadian periods in morning and evening cells. Here we show, by behavioural and molecular assays, that the six canonical groups of clock neurons are organized into two separate neuronal circuits. One has no apparent effect on locomotor rhythmicity in darkness, but within the second circuit the molecular and behavioural timing of the evening cells is determined by morning-cell properties. This is due to a daily resetting signal from the morning to the evening cells, which run at their genetically programmed pace between consecutive signals. This neural circuit and oscillator-coupling mechanism ensures a proper relationship between the timing of morning and evening locomotor activity.  相似文献   

3.
B Krishnan  S E Dryer  P E Hardin 《Nature》1999,400(6742):375-378
The core mechanism of circadian timekeeping in arthropods and vertebrates consists of feedback loops involving several clock genes, including period (per) and timeless (tim). In the fruitfly Drosophila, circadian oscillations in per expression occur in chemosensory cells of the antennae, even when the antennae are excised and maintained in isolated organ culture. Here we demonstrate a robust circadian rhythm in Drosophila in electrophysiological responses to two classes of olfactory stimuli. These rhythms are observed in wild-type flies during light-dark cycles and in constant darkness, but are abolished in per or tim null-mutant flies (per01 and tim01) which lack rhythms in adult emergence and locomotor behaviour. Olfactory rhythms are also abolished in the per 7.2:2 transgenic line in which per expression is restricted to the lateral neurons of the optic lobe. Because per 7.2:2 flies do not express per in peripheral oscillators, our results provide evidence that peripheral circadian oscillators are necessary for circadian rhythms in olfactory responses. As olfaction is essential for food acquisition, social interactions and predator avoidance in many animals, circadian regulation of olfactory systems could have profound effects on the behaviour of organisms that rely on this sensory modality.  相似文献   

4.
A new role for cryptochrome in a Drosophila circadian oscillator   总被引:4,自引:0,他引:4  
Krishnan B  Levine JD  Lynch MK  Dowse HB  Funes P  Hall JC  Hardin PE  Dryer SE 《Nature》2001,411(6835):313-317
Cryptochromes are flavin/pterin-containing proteins that are involved in circadian clock function in Drosophila and mice. In mice, the cryptochromes Cry1 and Cry2 are integral components of the circadian oscillator within the brain and contribute to circadian photoreception in the retina. In Drosophila, cryptochrome (CRY) acts as a photoreceptor that mediates light input to circadian oscillators in both brain and peripheral tissue. A Drosophila cry mutant, cryb, leaves circadian oscillator function intact in central circadian pacemaker neurons but renders peripheral circadian oscillators largely arrhythmic. Although this arrhythmicity could be caused by a loss of light entrainment, it is also consistent with a role for CRY in the oscillator. A peripheral oscillator drives circadian olfactory responses in Drosophila antennae. Here we show that CRY contributes to oscillator function and physiological output rhythms in the antenna during and after entrainment to light-dark cycles and after photic input is eliminated by entraining flies to temperature cycles. These results demonstrate a photoreceptor-independent role for CRY in the periphery and imply fundamental differences between central and peripheral oscillator mechanisms in Drosophila.  相似文献   

5.
6.
Circadian clocks have evolved to synchronize physiology, metabolism and behaviour to the 24-h geophysical cycles of the Earth. Drosophila melanogaster's rhythmic locomotor behaviour provides the main phenotype for the identification of higher eukaryotic clock genes. Under laboratory light-dark cycles, flies show enhanced activity before lights on and off signals, and these anticipatory responses have defined the neuronal sites of the corresponding morning (M) and evening (E) oscillators. However, the natural environment provides much richer cycling environmental stimuli than the laboratory, so we sought to examine fly locomotor rhythms in the wild. Here we show that several key laboratory-based assumptions about circadian behaviour are not supported by natural observations. These include the anticipation of light transitions, the midday 'siesta', the fly's crepuscular activity, its nocturnal behaviour under moonlight, and the dominance of light stimuli over temperature. We also observe a third major locomotor component in addition to M and E, which we term 'A' (afternoon). Furthermore, we show that these natural rhythm phenotypes can be observed in the laboratory by using realistic temperature and light cycle simulations. Our results suggest that a comprehensive re-examination of circadian behaviour and its molecular readouts under simulated natural conditions will provide a more authentic interpretation of the adaptive significance of this important rhythmic phenotype. Such studies should also help to clarify the underlying molecular and neuroanatomical substrates of the clock under natural protocols.  相似文献   

7.
Product of per locus of Drosophila shares homology with proteoglycans   总被引:23,自引:0,他引:23  
F R Jackson  T A Bargiello  S H Yun  M W Young 《Nature》1986,320(6058):185-188
  相似文献   

8.
9.
B Zheng  D W Larkin  U Albrecht  Z S Sun  M Sage  G Eichele  C C Lee  A Bradley 《Nature》1999,400(6740):169-173
Circadian rhythms are driven by endogenous biological clocks that regulate many biochemical, physiological and behavioural processes in a wide range of life forms. In mammals, there is a master circadian clock in the suprachiasmatic nucleus of the anterior hypothalamus. Three putative mammalian homologues (mPer1, mPer2 and mPer3) of the Drosophila circadian clock gene period (per) have been identified. The mPer genes share a conserved PAS domain (a dimerization domain found in Per, Arnt and Sim) and show a circadian expression pattern in the suprachiasmatic nucleus. To assess the in vivo function of mPer2, we generated and characterized a deletion mutation in the PAS domain of the mouse mPer2 gene. Here we show that mice homozygous for this mutation display a shorter circadian period followed by a loss of circadian rhythmicity in constant darkness. The mutation also diminishes the oscillating expression of both mPer1 and mPer2 in the suprachiasmatic nucleus, indicating that mPer2 may regulate mPer1 in vivo. These data provide evidence that an mPer gene functions in the circadian clock, and define mPer2 as a component of the mammalian circadian oscillator.  相似文献   

10.
 生物节律主要指有机体生命活动的内在节律性。蜜蜂生物节律受到其社会性的影响,从而参与许多复杂行为的调控。与果蝇相比,蜜蜂的生物节律与哺乳动物更相似。工蜂和蜂王的生物节律表现出高度的可塑性。例如,工蜂的昼夜节律受其劳动分工形式的调控,并通过与幼蜂的直接接触来调节,哺育蜂昼夜照料幼虫,在行为或时钟基因表达方面没有昼夜节律变化。从蜜蜂的社会性、蜜蜂生物节律产生的分子机制、神经基础、研究方法、可塑性、蜜蜂的睡眠等方面综述了蜜蜂生物节律的研究进展。  相似文献   

11.
Liu C  Li S  Liu T  Borjigin J  Lin JD 《Nature》2007,447(7143):477-481
  相似文献   

12.
The ELF3 zeitnehmer regulates light signalling to the circadian clock   总被引:24,自引:0,他引:24  
McWatters HG  Bastow RM  Hall A  Millar AJ 《Nature》2000,408(6813):716-720
The circadian system regulates 24-hour biological rhythms and seasonal rhythms, such as flowering. Long-day flowering plants like Arabidopsis thaliana, measure day length with a rhythm that is not reset at lights-off, whereas short-day plants measure night length on the basis of circadian rhythm of light sensitivity that is set from dusk, early flowering 3 (elf3) mutants of Arabidopsis are aphotoperiodic and exhibit light-conditional arrhythmias. Here we show that the elf3-7 mutant retains oscillator function in the light but blunts circadian gating of CAB gene activation, indicating that deregulated phototransduction may mask rhythmicity. Furthermore, elf3 mutations confer the resetting pattern of short-day photoperiodism, indicating that gating of phototransduction may control resetting. Temperature entrainment can bypass the requirement for normal ELF3 function for the oscillator and partially restore rhythmic CAB expression. Therefore, ELF3 specifically affects light input to the oscillator, similar to its function in gating CAB activation, allowing oscillator progression past a light-sensitive phase in the subjective evening. ELF3 provides experimental demonstration of the zeitnehmer ('time-taker') concept.  相似文献   

13.
Ko HW  Jiang J  Edery I 《Nature》2002,420(6916):673-678
Protein phosphorylation has a key role in modulating the stabilities of circadian clock proteins in a manner specific to the time of day. A conserved feature of animal clocks is that Period (Per) proteins undergo daily rhythms in phosphorylation and levels, events that are crucial for normal clock progression. Casein kinase Iepsilon (CKIepsilon) has a prominent role in regulating the phosphorylation and abundance of Per proteins in animals. This was first shown in Drosophila with the characterization of Doubletime (Dbt), a homologue of vertebrate casein kinase Iepsilon. However, it is not clear how Dbt regulates the levels of Per. Here we show, using a cell culture system, that Dbt promotes the progressive phosphorylation of Per, leading to the rapid degradation of hyperphosphorylated isoforms by the ubiquitin-proteasome pathway. Slimb, an F-box/WD40-repeat protein functioning in the ubiquitin-proteasome pathway interacts preferentially with phosphorylated Per and stimulates its degradation. Overexpression of slimb or expression in clock cells of a dominant-negative version of slimb disrupts normal rhythmic activity in flies. Our findings suggest that hyperphosphorylated Per is targeted to the proteasome by interactions with Slimb.  相似文献   

14.
J Ewer  M Rosbash  J C Hall 《Nature》1988,333(6168):82-84
The period (per) gene of Drosophila melanogaster is involved in the expression of circadian rhythms of locomotor activity in adult flies. Molecular studies of per (reviewed in ref. 2) have shown that the transcribed and translated products of this gene are present primarily at the embryonic, pupal and adult stages. Here we describe experiments with arrhythmic per mutants bearing an inducible form of this gene which indicate that strongly rhythmic adult behaviour can be obtained only if per expression is induced in the adult, independent of its history of expression earlier in development. Thus per-mutant locomotor-activity phenotypes seem not to result from abnormalities in the development of neural structures or in physiological processes that may be required at pre-adult stages for the expression of this circadian rhythm. Moreover, the action of per after light:dark cycle entrainment seems to be sufficient for activity rhythms to be exhibited in constant darkness; this suggests further that the per product is required only during the time that the rhythmic behaviour is being manifested. Our strategy used a heat-shock gene promotor fused to per coding sequences to obtain conditional gene expression. Heat-shock promoter-driven genes have previously been used to study the mode of action and tissue specificity of a variety of Drosophila genes; our experiments on circadian rhythms demonstrate the use of such gene constructions for the temporal manipulation of genes whose phenotypes, behavioural and otherwise, affect whole organisms.  相似文献   

15.
Many plants use day length as an environmental cue to ensure proper timing of the switch from vegetative to reproductive growth. Day-length sensing involves an interaction between the relative length of day and night, and endogenous rhythms that are controlled by the plant circadian clock. Thus, plants with defects in circadian regulation cannot properly regulate the timing of the floral transition. Here we describe the gene EARLY FLOWERING 4 (ELF4), which is involved in photoperiod perception and circadian regulation. ELF4 promotes clock accuracy and is required for sustained rhythms in the absence of daily light/dark cycles. elf4 mutants show attenuated expression of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), a gene that is thought to function as a central oscillator component. In addition, elf4 plants transiently show output rhythms with highly variable period lengths before becoming arrhythmic. Mutations in elf4 result in early flowering in non-inductive photoperiods, which is probably caused by elevated amounts of CONSTANS (CO), a gene that promotes floral induction.  相似文献   

16.
17.
18.
Shaw PJ  Tononi G  Greenspan RJ  Robinson DF 《Nature》2002,417(6886):287-291
Sleep is controlled by two processes: a homeostatic drive that increases during waking and dissipates during sleep, and a circadian pacemaker that controls its timing. Although these two systems can operate independently, recent studies indicate a more intimate relationship. To study the interaction between homeostatic and circadian processes in Drosophila, we examined homeostasis in the canonical loss-of-function clock mutants period (per(01)), timeless (tim(01)), clock (Clk(jrk)) and cycle (cyc(01)). cyc(01) mutants showed a disproportionately large sleep rebound and died after 10 hours of sleep deprivation, although they were more resistant than other clock mutants to various stressors. Unlike other clock mutants, cyc(01) flies showed a reduced expression of heat-shock genes after sleep loss. However, activating heat-shock genes before sleep deprivation rescued cyc(01) flies from its lethal effects. Consistent with the protective effect of heat-shock genes, was the observation that flies carrying a mutation for the heat-shock protein Hsp83 (Hsp83(08445)) showed exaggerated homeostatic response and died after sleep deprivation. These data represent the first step in identifying the molecular mechanisms that constitute the sleep homeostat.  相似文献   

19.
20.
Synchronizing rhythms of behaviour and metabolic processes is important for cardiovascular health and preventing metabolic diseases. The nuclear receptors REV-ERB-α and REV-ERB-β have an integral role in regulating the expression of core clock proteins driving rhythms in activity and metabolism. Here we describe the identification of potent synthetic REV-ERB agonists with in vivo activity. Administration of synthetic REV-ERB ligands alters circadian behaviour and the circadian pattern of core clock gene expression in the hypothalami of mice. The circadian pattern of expression of an array of metabolic genes in the liver, skeletal muscle and adipose tissue was also altered, resulting in increased energy expenditure. Treatment of diet-induced obese mice with a REV-ERB agonist decreased obesity by reducing fat mass and markedly improving dyslipidaemia and hyperglycaemia. These results indicate that synthetic REV-ERB ligands that pharmacologically target the circadian rhythm may be beneficial in the treatment of sleep disorders as well as metabolic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号